Poly(ethylene Glycol) Methyl Ether Methacrylate-Based Injectable Hydrogels: Swelling, Rheological, and In Vitro Biocompatibility Properties with ATDC5 Chondrogenic Lineage

  1. Farrag, Yousof 1
  2. Ait Eldjoudi, Djedjiga 1
  3. Farrag, Mariam 1
  4. González-Rodríguez, María 1
  5. Ruiz-Fernández, Clara 1
  6. Cordero, Alfonso 1
  7. Varela-García, María 1
  8. Torrijos Pulpón, Carlos 1
  9. Bouza, Rebeca 4
  10. Lago, Francisca 2
  11. Pino, Jesus 1
  12. Alvarez-Lorenzo, Carmen 3
  13. Gualillo, Oreste 1
  1. 1 Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
  2. 2 Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
  3. 3 I+D Farma Group (GI-1645), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
  4. 4 Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
Revista:
Polymers

ISSN: 2073-4360

Ano de publicación: 2023

Volume: 15

Número: 24

Páxinas: 4635

Tipo: Artigo

DOI: 10.3390/POLYM15244635 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Polymers

Obxectivos de Desenvolvemento Sustentable

Información de financiamento

Financiadores

  • ISCIII
  • FEDER
    • CD21/00042
  • COST programme
  • European Union
  • Instituto de Salud Carlos III
  • European Union
    • PI20/00902
  • Xunta de Galicia, Consellería de Educación, Universidade e Formación Profesional and Consellería de Economía, Emprego e Industria
    • GPC IN607B2022/02

Referencias bibliográficas

  • Matyjaszewski, (2012), Polymer Science: A Comprehensive Reference, 10 Volume Set, Volume 9, pp. 385
  • Mohanty, A.R., Ravikumar, A., and Peppas, N.A. (2022). Recent Advances in Glucose Responsive Insulin Delivery Systems: Novel Hydrogels and Future Applications. Regen. Biomater., 9.
  • Kokkarachedu, V., Kanikireddy, V., and Sadiku, R. (2020). Antibiotic Materials in Healthcare, Academic Press.
  • Seidlits, (2013), Expert Opin. Drug Deliv., 10, pp. 499, 10.1517/17425247.2013.764864
  • Mathew, (2018), Int. J. Biol. Macromol., 110, pp. 17, 10.1016/j.ijbiomac.2017.11.113
  • Guo, (2023), Bioact. Mater., 21, pp. 175
  • Winkler, C.M., Kuhn, A.I., Hentschel, G., and Glasmacher, B. (2022). A Review on Novel Channel Materials for Particle Image Velocimetry Measurements—Usability of Hydrogels in Cardiovascular Applications. Gels, 8.
  • Pettinelli, (2020), Int. J. Pharm., 589, pp. 119828, 10.1016/j.ijpharm.2020.119828
  • Neamtu, B., Barbu, A., Negrea, M.O., Berghea-Neamțu, C.Ș., Popescu, D., Zăhan, M., and Mireșan, V. (2022). Carrageenan-Based Compounds as Wound Healing Materials. Int. J. Mol. Sci., 23.
  • Fan, F., Saha, S., and Hanjaya-Putra, D. (2021). Biomimetic Hydrogels to Promote Wound Healing. Front. Bioeng. Biotechnol., 9.
  • Serramito, (2022), J. Control. Release, 348, pp. 431, 10.1016/j.jconrel.2022.06.001
  • Ma, (2021), Adv. Intell. Syst., 3, pp. 2000263, 10.1002/aisy.202000263
  • Alonso, J.M., Del Olmo, J.A., Gonzalez, R.P., and Saez-martinez, V. (2021). Injectable Hydrogels: From Laboratory to Industrialization. Polymers, 13.
  • Uman, (2020), J. Appl. Polym. Sci., 137, pp. 48668, 10.1002/app.48668
  • Bae, (2013), J. Mater. Chem. B, 1, pp. 5371, 10.1039/c3tb20940g
  • Aguiar, (2021), Int. J. Pharm., 597, pp. 120318, 10.1016/j.ijpharm.2021.120318
  • Thorpe, (2018), Oncotarget, 9, pp. 18277, 10.18632/oncotarget.24813
  • Carballo-Pedrares, N., Fuentes-Boquete, I., Díaz-Prado, S., and Rey-Rico, A. (2020). Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches—An Overview. Pharmaceutics, 12.
  • Velasco-Salgado, C., Pontes-Quero, G.M., García-Fernández, L., Aguilar, M.R., de Wit, K., Vázquez-Lasa, B., Rojo, L., and Abradelo, C. (2022). The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics, 14.
  • Amiryaghoubi, (2022), React. Funct. Polym., 177, pp. 105313, 10.1016/j.reactfunctpolym.2022.105313
  • Naghizadeh, (2021), J. Cell. Physiol., 236, pp. 2194, 10.1002/jcp.30006
  • Skiba, (2021), Cartilage, 12, pp. 438, 10.1177/1947603519847737
  • Velasco-Rodriguez, B., Diaz-vidal, T., Rosales-rivera, L.C., García-gonzález, C.A., Alvarez-lorenzo, C., Al-modlej, A., Domínguez-arca, V., Prieto, G., Barbosa, S., and Soltero Martínez, J.F.A. (2021). Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications. Int. J. Mol. Sci., 22.
  • Irmak, (2020), Int. J. Biol. Macromol., 164, pp. 3523, 10.1016/j.ijbiomac.2020.08.241
  • Aisenbrey, (2018), J. Orthop. Res., 36, pp. 64, 10.1002/jor.23760
  • Ramadan, (2014), Mater. Sci. Eng. C, 42, pp. 696, 10.1016/j.msec.2014.06.017
  • Pettinelli, (2019), Mater. Sci. Eng. C, 96, pp. 583, 10.1016/j.msec.2018.11.071
  • Skandalis, (2022), J. Appl. Polym. Sci., 139, pp. e52899, 10.1002/app.52899
  • Balafouti, A., and Pispas, S. (2023). Hyperbranched Polyelectrolyte Copolymers as Novel Candidate Delivery Systems for Bio-Relevant Compounds. Materials, 16.
  • Gerardos, (2023), Macromol. Chem. Phys., 224, pp. 2300109, 10.1002/macp.202300109
  • Tommasi, (2016), Tissue Eng. Part A, 22, pp. 862, 10.1089/ten.tea.2016.0014
  • Raafat, (2021), Radiat. Phys. Chem., 179, pp. 109268, 10.1016/j.radphyschem.2020.109268
  • Tai, (2009), Biomacromolecules, 10, pp. 2895, 10.1021/bm900712j
  • Santoro, (2015), J. Orthop. Res., 33, pp. 1784, 10.1002/jor.22954
  • Yao, (2013), J. Cell. Biochem., 114, pp. 1223, 10.1002/jcb.24467
  • Strachota, (2015), Soft Matter, 11, pp. 9291, 10.1039/C5SM01996F
  • Shirangi, (2015), Bioconjug. Chem., 26, pp. 90, 10.1021/bc500445d
  • Okeke, U.C., Snyder, C.R., and Frukhtbeyn, S.A. (2019). Synthesis, Purification and Characterization of Polymerizable Multifunctional Quaternary Ammonium Compounds. Molecules, 24.
  • Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., and Yaszemski, M.J. (2020). Biomaterials Science, Academic Press.
  • Peppas, (1977), J. Appl. Polym. Sci., 21, pp. 1763, 10.1002/app.1977.070210704
  • Cursaru, (2010), UPB Sci. Bull. Ser. B Chem. Mater. Sci., 72, pp. 99
  • Holback, H., Yeo, Y., and Park, K. (2011). Hydrogel Swelling Behavior and Its Biomedical Applications, Woodhead Publishing Limited.
  • Yan, (2010), Chem. Soc. Rev., 39, pp. 3528, 10.1039/b919449p
  • Chen, (2017), ACS Biomater. Sci. Eng., 3, pp. 3146, 10.1021/acsbiomaterials.7b00734
  • Mihajlovic, (2017), Macromolecules, 50, pp. 3333, 10.1021/acs.macromol.7b00319
  • Peppas, (2006), Adv. Mater., 18, pp. 1345, 10.1002/adma.200501612
  • Chun, C., Lee, D.Y., Kim, J.T., Kwon, M.K., Kim, Y.Z., and Kim, S.S. (2016). Effect of Molecular Weight of Hyaluronic Acid (HA) on Viscoelasticity and Particle Texturing Feel of HA Dermal Biphasic Fillers. Biomater. Res., 20.
  • Guaresti, (2017), Int. J. Biol. Macromol., 102, pp. 1, 10.1016/j.ijbiomac.2017.04.003