Molecular dynamics simulation of the structure and interfacial free energy barriers of mixtures of ionic liquids and divalent salts near a graphene wall
- Gómez-González, Víctor 56789
- Docampo-Álvarez, Borja 56789
- Méndez-Morales, Trinidad 56789
- Cabeza, Oscar 1516171819
- Ivaništšev, Vladislav B. 1234
- Fedorov, Maxim V. 1011121314
- Gallego, Luis J. 56789
- Varela, Luis M. 56789
-
1
Institute of Chemistry
info
-
2
University of Tartu
info
- 3 Tartu 50411
-
4
Concordia International University Estonia
info
Concordia International University Estonia
Tallin, Estonia
- 5 Grupo de Nanomateriales
- 6 Fotónica y Materia Blanda. Departamento de Física de Partículas
- 7 Facultade de Física
-
8
Universidade de Santiago de Compostela
info
- 9 E-15782 Santiago de Compostela
-
10
Skolkovo Institute of Science and Technology
info
- 11 Moscow 143026
- 12 Russian Federation
- 13 Department of Physics
- 14 Scottish University Physics Alliance (SUPA)
- 15 Departamento de Física
- 16 Facultade de Ciencias
-
17
Universidade da Coruña
info
- 18 E-15071 A Coruña
- 19 Spain
ISSN: 1463-9076, 1463-9084
Year of publication: 2017
Volume: 19
Issue: 1
Pages: 846-853
Type: Article
More publications in: Physical Chemistry Chemical Physics
Abstract
A molecular dynamics study of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) with magnesium tetrafluoroborate (Mg[BF4]2) confined between two parallel graphene walls is reported. The structure of the system is analyzed by means of ionic density profiles, lateral structure of the first layer close to the graphene surface and angular orientations of imidazolium cations. Free energy profiles for divalent magnesium cations are calculated using two different methods in order to evaluate the height of the potential barriers near the walls, and the results are compared with those of mixtures of the same ionic liquid and a lithium salt (Li[BF4]). Preferential adsorption of magnesium cations is analyzed using a simple model and compared to that of lithium cations, and vibrational densities of states are calculated for the cations close to the walls analyzing the influence of the graphene surface charge. Our results indicate that magnesium cations next to the graphene wall have a roughly similar environment to that in the bulk. Moreover, they face higher potential barriers and are less adsorbed on the charged graphene walls than lithium cations. In other words, magnesium cations have a more stable solvation shell than lithium ones
Funding information
Funders
-
Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- AGRUP2015/11
-
Ministerio de Educación, Cultura y Deporte
- FPU program
-
European Cooperation in Science and Technology
- CM1206
- MP1303
-
Ministerio de Economía y Competitividad
- FIS2012-33126
- MAT2014-57943-C3-1-P
- MAT2014-57943-C3-3-P
Bibliographic References
- Rogers, (2003), Science, 302, pp. 792, 10.1126/science.1090313
- Seddon, (2003), Nat. Mater., 2, pp. 363, 10.1038/nmat907
- P. Wasserscheid and T.Welton, Ionic liquids in synthesis, Wiley Online Library, 2003
- Dupont, (2002), Chem. Rev., 102, pp. 3667, 10.1021/cr010338r
- MacFarlane, (2007), Acc. Chem. Res., 40, pp. 1165, 10.1021/ar7000952
- Armand, (2009), Nat. Mater., 8, pp. 621, 10.1038/nmat2448
- Lu, (2012), J. Phys. Chem. B, 116, pp. 9160, 10.1021/jp304735p
- Fedorov, (2014), Chem. Rev., 114, pp. 2978, 10.1021/cr400374x
- Sakaebe, (2003), Electrochem. Commun., 5, pp. 594, 10.1016/S1388-2481(03)00137-1
- García, (2004), Electrochim. Acta, 49, pp. 4583, 10.1016/j.electacta.2004.04.041
- Henderson, (2004), Chem. Mater., 16, pp. 2881, 10.1021/cm049942j
- Diaw, (2005), J. Power Sources, 146, pp. 682, 10.1016/j.jpowsour.2005.03.068
- Zhou, (2010), J. Phys. Chem. C, 114, pp. 6201, 10.1021/jp911759d
- Lee, (2005), Green Chem., 109, pp. 13663
- Nicotera, (2005), J. Phys. Chem. B, 109, pp. 22814, 10.1021/jp053799f
- Castriota, (2005), J. Phys. Chem. A, 109, pp. 92, 10.1021/jp046030w
- Lassègues, (2006), Phys. Chem. Chem. Phys., 8, pp. 5629, 10.1039/B615127B
- Markevich, (2006), Electrochem. Commun., 8, pp. 1331, 10.1016/j.elecom.2006.06.002
- Xu, (2006), J. Power Sources, 160, pp. 621, 10.1016/j.jpowsour.2006.01.054
- Seki, (2006), J. Phys. Chem. B, 110, pp. 10228, 10.1021/jp0620872
- Egashira, (2007), J. Power Sources, 174, pp. 560, 10.1016/j.jpowsour.2007.06.123
- Saito, (2007), J. Phys. Chem. B, 111, pp. 11794, 10.1021/jp072998r
- Borgel, (2009), J. Power Sources, 189, pp. 331, 10.1016/j.jpowsour.2008.08.099
- Lassègues, (2009), J. Phys. Chem. A, 113, pp. 305, 10.1021/jp806124w
- Nicolau, (2010), J. Phys. Chem. B, 114, pp. 8350, 10.1021/jp103810r
- Zhou, (2010), Chem. Mater., 22, pp. 1203, 10.1021/cm902691v
- Menne, (2013), Electrochem. Commun., 31, pp. 39, 10.1016/j.elecom.2013.02.026
- Yoon, (2013), Energy Environ. Sci., 6, pp. 979, 10.1039/c3ee23753b
- Castiglione, (2014), J. Phys. Chem. B, 118, pp. 13679, 10.1021/jp509387r
- Aguilera, (2015), Phys. Chem. Chem. Phys., 17, pp. 27082, 10.1039/C5CP03825A
- Gómez-González, (2015), J. Chem. Phys., 143, pp. 124507, 10.1063/1.4931656
- Méndez-Morales, (2013), J. Phys. Chem. B, 117, pp. 3207, 10.1021/jp312669r
- Méndez-Morales, (2014), J. Phys. Chem. B, 118, pp. 761, 10.1021/jp410090f
- Méndez-Morales, (2015), Phys. Chem. Chem. Phys., 17, pp. 5298, 10.1039/C4CP04668D
- Russina, (2015), J. Mol. Liq., 205, pp. 16, 10.1016/j.molliq.2014.08.007
- Méndez-Morales, (2014), Phys. Chem. Chem. Phys., 16, pp. 13271, 10.1039/C4CP00918E
- Ivaništšev, (2016), Phys. Chem. Chem. Phys., 18, pp. 1302, 10.1039/C5CP05973A
- Cheek, (2008), J. Electrochem. Soc., 155, pp. D91, 10.1149/1.2804763
- Giffin, (2014), J. Phys. Chem. C, 118, pp. 9966, 10.1021/jp502354h
- Vardar, (2014), ACS Appl. Mater. Interfaces, 6, pp. 18033, 10.1021/am5049064
- Saha, (2015), Electrochim. Acta, 183, pp. 42, 10.1016/j.electacta.2015.05.018
- D. V. D. Spoel , E.Lindahl, B.Hess, A. R. V.Buuren, E.Apol, P. J.Meulenhoff, D. P.Tieleman, A. L. T. M.Sijbers, K. A.Feenstra, R. V.Drunen and H. J. C.Berendsen, Gromacs User Manual version 4.6.7, http://www.Gromacs.org, 2014
- Jorgensen, (1986), J. Phys. Chem., 90, pp. 1276, 10.1021/j100398a015
- Payal, (2012), ChemPhysChem, 13, pp. 1764, 10.1002/cphc.201100871
- Kislenko, (2009), Phys. Chem. Chem. Phys., 11, pp. 5584, 10.1039/b823189c
- Fedorov, (2012), Phys. Chem. Chem. Phys., 14, pp. 2552, 10.1039/c2cp22730d
- Lynden-Bell, (2012), Phys. Chem. Chem. Phys., 14, pp. 2693, 10.1039/c2cp23267g
- Pinilla, (2005), J. Phys. Chem. B, 109, pp. 17922, 10.1021/jp052999o
- Kornyshev, (2007), J. Phys. Chem. B, 111, pp. 5545, 10.1021/jp067857o
- Fedorov, (2008), Electrochim. Acta, 111, pp. 6835, 10.1016/j.electacta.2008.02.065
- Maolin, (2008), J. Chem. Phys., 128, pp. 134504, 10.1063/1.2898497
- Feng, (2009), J. Phys. Chem. C, 113, pp. 4549, 10.1021/jp809900w
- Kislenko, (2009), Phys. Chem. Chem. Phys., 11, pp. 5584, 10.1039/b823189c
- Wang, (2010), J. Phys. Chem. C, 114, pp. 990, 10.1021/jp902225n
- Dou, (2011), J. Phys.: Condens. Matter, 23, pp. 175001
- Ivaništšev, (2014), Electrochem. Commun., 48, pp. 61, 10.1016/j.elecom.2014.08.014
- Ivaništšev, (2015), J. Phys.: Condens. Matter, 27, pp. 102101
- Salanne, (2015), Phys. Chem. Chem. Phys., 17, pp. 14270, 10.1039/C4CP05550K
- Docampo-Álvarez, (2016), J. Phys.: Condens. Matter, 28, pp. 464001
- Rotenberg, (2015), J. Phys. Chem. Lett., 6, pp. 4978, 10.1021/acs.jpclett.5b01889
- Kornyshev, (2014), J. Phys. Chem. C, 118, pp. 18285, 10.1021/jp5047062
- Kirchner, (2013), Electrochim. Acta, 110, pp. 762, 10.1016/j.electacta.2013.05.049
- Wallauer, (2013), Z. Naturforsch., B: J. Chem. Sci., 68, pp. 1143, 10.5560/znb.2013-3153
- Ivaništšev, (2014), J. Phys. Chem. C, 118, pp. 5841, 10.1021/jp4120783
- J. P. Hansen and I. R.McDonald, Theory of simple liquids, Academic Press, Oxford, 1986