Polymers in Drug Delivery: Fundamentals

  1. Díaz-Gómez, Luis
  2. Concheiro, Angel
  3. Alvarez-Lorenzo, Carmen
Libro:
Advanced Polymers in Medicine

ISBN: 9783319124773 9783319124780

Ano de publicación: 2014

Páxinas: 319-339

Tipo: Capítulo de libro

DOI: 10.1007/978-3-319-12478-0_11 GOOGLE SCHOLAR lock_openAcceso aberto editor

Referencias bibliográficas

  • Allen, L.V., Popovich, N.G., Ansel, H.C.: Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. Lippincott Williams & Wilkins, Baltimore (2011). Chapter 1
  • Krówczynski, L.: The development of pharmaceutical technology (chronological tabulated facts). Pharmazie 40, 346 (1985)
  • Alvarez-Lorenzo, C., Concheiro, A.: From drug dosage forms to intelligent drug-delivery systems: a change of paradigm. In: Alvarez-Lorenzo, C., Concheiro, A. (eds.) Smart materials for drug delivery, vol. 1, p. 1. Royal Society of Chemistry Publishing, Cambridge (2013)
  • Dokoumetzidis, A., Macheras, P.: A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int. J. Pharm. 321, 1 (2006)
  • Hoffman, A.S.: The origins and evolution of “controlled” drug delivery systems. J. Control. Release 18, 153 (2008)
  • Alvarez-Lorenzo, C., Concheiro, A.: Smart drug delivery systems: from fundamentals to the clinic. Chem. Comm. 50, 7743 (2014)
  • Hon, D.N.S.: Cellulose and its derivatives: structures, reactions and medical uses. In: Dumitriu, S. (ed.) Polysaccharides in Medicinal Applications, p. 87. Marcel Dekker, New York (1996)
  • Rowe, R.C., Sheskey, P.J., Cook, W.G., Fenton, M.E.: Handbook of Pharmaceutical Excipients. Pharmaceutical Press, London (2012)
  • Zhang, Y., Law, Y., Xhakrabarti, S.: Physical properties and compact analysis of commonly used direct compression binders. AAPS PharmSciTech 4, 489 (2003)
  • Alvarez-Lorenzo, C., Gomez-Amoza, J.L., Martinez-Pachecho, R., Souto, C., Concheiro, A.: Evaluation of low-substituted hydroxypropylcellulose as filler-binders for direct compression. Int. J. Pharm. 197, 107 (2000)
  • Chen, L., Li, X., Li, L., Guo, S.: Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Curr. Appl. Phys. 7(s1), 90 (2007)
  • Rashid, I., Al Omari, M.M.H., Badwan, A.A.: From native to multifunctional starch-based excipients designed for direct compression formulation. Starch 65, 552 (2013)
  • Lee, Y.K., Mooney, D.J.: Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106 (2012)
  • Pawar, S.N., Edgar, K.J.: Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33, 3279 (2012)
  • Tonnesen, H.H., Karlsen, J.: Alginate in drug delivery systems. Drug. Dev. Ind. Pharm. 28, 621 (2002)
  • Coviello, T., Matricardi, P., Marianecci, C., Alhaique, F.: Polysaccharide hydrogels for modified release formulations. J. Control. Rel. 119, 5 (2007)
  • Freile-Pelegrín, Y., Murano, E.: Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour. Technol. 96, 295 (2005)
  • Bühler, V.: Kollidon®, polyvinylpyrrolidone excipients for the pharmaceutical industry, 9th edn. BASF, Ludwigshafen (2008)
  • Lubrizol.: Pharmaceutical Bulletin 1. http://www.lubrizol.com/Life-Science/Documents/Pharmaceutical/Bulletins/Bulletin-01—Polymers-for-Pharmaceutical-Applications.pdf (2011). Accessed on June 2014
  • Danhier, F., Ansorena, E., Silva, J.M., Coco, R., Le Breton, A., Preat, V.: PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release. 161, 505 (2012)
  • Tahara, K., Sakai, T., Yamamoto, H., Takeuchi, H., Kawashima, Y.: Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int. J. Pharm. 354, 210 (2008)
  • Makadia, H.K., Siegel, S.J.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377 (2011)
  • Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer—Polycaprolactone in the 21st century. Progr. Polym. Sci. 35, 1217 (2010)
  • Joshi, S., Petereit, H.U.: Film coatings for taste masking and moisture protection. Int. J. Pharm. 457, 395 (2013)
  • Maroni, A., Zema, L., Loreti, G., Palugan, L., Gazzaniga, A.: Film coatings for oral pulsatile release. Int. J. Pharm. 457, 362 (2013)
  • Farag, Y., Leopold, C.S.: Development of shellac-coated sustained release pellet formulations. Eur. J. Pharm. Sci. 42, 400 (2011)
  • Pearnchob, N., Siepmann, J., Bodmeier, R.: Pharmaceutical application of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets. Drug. Dev. Ind. Pharm. 29, 925 (2003)
  • Felton, L.A., Porter, S.C.: An update on pharmaceutical film coating for drug delivery. Expert. Opin. Drug Del. 10, 421 (2013)
  • Wong, T.W., Colombo, G., Sonvico, F.: Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS. Pharm. Sci. Tech. 12, 201 (2011)
  • Siew, L.F., Basit, A.W., Newton, J.M.: The properties of amylose–ethylcellulose films cast from organic-based solvents as potential coatings for colonic drug delivery. Eur. J. Pharm. Sci. 11, 133 (2000)
  • Vervoort, L., Kinget, R.: In vitro degradation by colonic bacteria of inulin HP incorporated in Eudragit films. Int. J. Pharm. 129, 185 (1996)
  • Brøndsted, H., Andersen, C., Hovgaard, L.: Crosslinked dextran—a new capsule material for colon targeting of drugs. J. Control. Release. 53, 7 (1998)
  • Nollenberger, K., Albers, J.: Poly(meth)acrylate-based coatings. Int. J. Pharm. 457, 461 (2013)
  • Bühler, V.: Kollicoat grades. BASF, Ludwigshafen (2007)
  • Fahr, A., Liu, X.: Drug delivery strategies for poorly water-soluble drugs. Expert. Opin. Drug. Del. 4, 403 (2007)
  • Lu, Y., Park, K.: Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453, 198 (2013)
  • Chiappetta, D.A., Sosnik, A.: Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66, 303 (2007)
  • Rangel-Yagui, C.O., Pessoa, A., Tavares, L.C.: Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 8, 147 (2005)
  • Kwon, G.S.: Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst. 20, 357 (2003)
  • Kabanov, K.V., Batrakova, E.V., Alakhov, V.Y.: Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release. 82, 189 (2002)
  • Alvarez-Lorenzo, C., Rey-Rico, A., Sosnik, A., Taboada, P., Concheiro, A.: Poloxamine-based nanomaterials for drug delivery. Front. Biosci. (Elite edition) 2, 424 (2010)
  • Dumortier, G., Groissord, J.L., Agnely, F., Chaumeil, J.C.: A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 211, 2709 (2006)
  • Linn, M., Collnot, E.M., Djuric, D., Hempel, K., Fabian, E., Kolter, K., Lehr, C.M.: Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur. J. Pharm. Sci. 45, 336 (2012)
  • Cespi, M., Casettari, L., Palmieri, G.F., Perinelli, D.R., Bonacucina, G.: Rheological characterization of polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®) water dispersions. Colloid. Polym. Sci. 292, 235 (2014)
  • Shamma, R.N., Basha, M.: Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 237, 406 (2013)
  • Vo, C.L.N., Park, C., Lee, B.J.: Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 85, 799 (2013)
  • Serajuddin, A.T.M.: Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88, 1058 (1999)
  • Kumar, S., Gupta, S.K.: Pharmaceutical solid dispersion technology: a strategy to improve dissolution of poorly water-soluble drugs. Recent. Pat. Drug. Deliv. Formul. 7, 111 (2013)
  • Wilson, M., Williams, M.A., Jones, D.S., Andrews, G.P.: Hot-melt extrusion technology and pharmaceutical application. Ther. Deliv. 3, 787 (2012)
  • Leuner, C., Dressman, J.: Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47 (2000)
  • Janssens, S., van den Mooter, G.: Review: physical chemistry of solid dispersions. J. Pharm. Pharmacol. 61, 1571 (2009)
  • Hardung, H., Djuric, D., Shaukat, A.: Combining HME & solubilization: Soluplus®-the solid solution. Drug. Deliv. Tech. 10, 3 (2010)
  • Ravina-Eirin, E., Gomez-Amoza, L., Martinez-Pacheco, R.: Utility of the hyperbranched polymer hybrane S1200 for production of instant-release particles by hot melt extrusion. Drug. Dev. Ind. Pharm. 39, 1107 (2013)
  • Deli, M.A.: Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim. Biophys. Acta 1788, 892 (2009)
  • Illum, L.: Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15, 1326 (1998)
  • Smith, J., Wood, E., Dornish, M.: Effect of chitosan on epithelial cell tight junctions. Pharm. Res. 21, 43 (2004)
  • Di Colo, G., Zambito, Y., Zaino, C.: Polymeric enhancers of mucosal epithelia permeability: synthesis, transepitheliar penetration-enhancing properties, mechanism of action, safety issues. J. Pharm. Sci. 97, 1652 (2008)
  • Thanou, M., Nihot, M.T., Jansen, M., Verhoef, J.C., Junginger, H.E.: Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 90, 38 (2001)
  • Sandri, G., Rossi, S., Bonferoni, M.C., Ferrari, F., Zambito, Y., Di Colo, G., Caramella, C.: Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int. J. Pharm. 297, 146 (2005)
  • Mourya, V., Inamdar, B.: Trimethyl chitosan and its applications in drug delivery. J. Mater. Sci. Mater. Med. 20, 1057 (2009)
  • Andrews, G.P., Laverty, T.P., Jones, D.S.: Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 71, 505 (2009)
  • Clausen, A.E., Bernkop-Schnurch, A.: In vitro evaluation of the permeation-enhancing effect of thiolated polycarbophil. J. Pharm. Sciences. 89, 1253 (2000)
  • Iqbal, J., Shahnaz, G., Perera, G., Hintzen, F., Sarti, F., Berkop-Schnurch, A.: Thiolated chitosan: development and in vivo evaluation of an oral delivery system for leuprolide. Eur. J. Pharm. Biopharm. 80, 85 (2012)
  • Bernkop-Schnurch, A., Kast, C.E., Richter, M.F.: Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. J. Control. Release. 28, 277 (2001)
  • Trapani, A., Palazzo, C., Contino, M., Perrone, M.G., Cioffi, N., Ditaranto, N., Colabufo, N.A., Conese, M., Trapani, G., Puglisi, G.: Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study. Biomacromol 15, 882 (2014)
  • Bernkop-Schnürch, A., Grabovac, V.: Polymeric efflux pump inhibitors in oral drug delivery. Am. J. Drug. Del. 4, 263 (2006)
  • Eckford, P.D.W., Sharom, F.J.: ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev. 109, 2989 (2009)
  • Leveque, D., Jehl, F.: P-glycoprotein and pharmacokinetics. Anticancer. Res. 15, 331 (1995)
  • Yokoyama, M.: Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert. Opin. Drug. Del. 7, 145 (2010)
  • Loo, T.W., Clarke, D.M.: Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J. Membrane. Biol. 206, 173 (2005)
  • Varma, M.V., Perumal, O.P., Panchagnula, R.: Functional role of P-glycoprotein in limiting peroral drug absorption:optimizing drug delivery. Curr. Opin. Chem. Biol. 10, 367 (2006)
  • Werle, M.: Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm. Res. 25, 500 (2008)
  • Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y.: Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 54, 759 (2002)
  • D’Emanuele, A., Jevprasesphant, R., Penny, J., Attwood, D.: The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release. 95, 447 (2004)
  • Föger, F., Hoyer, H., Kafedjiiski, K., Thaurer, M., Bernkop-Schnürch, A.: In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein. Biomaterials 27, 5855 (2006)
  • Kabanov, A.V., Alkhov, VYu.: Pluronic® block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Critical. Rev. Therap. Drug. Carrier. Syst. 19, 1 (2002)
  • Cambón, A., Rey-Rico, A., Barbosa, S., Soltero, J.F.A., Yeates, S.G., Brea, J., Loza, M.I., Alvarez-Lorenzo, C., Concheiro, A., Taboada, P., Mosquera, V.: Poly(styrene oxide)-poly(ethylene oxide) block copolymers: From “classical” chemotherapeutic nanocarriers to active cell-response inducers. J. Control. Release. 167, 68 (2013)
  • Alakhova, D.Y., Rapoport, N.Y., Batrakova, E.V., Timoshin, A.A., Li, S., Nicholls, D., Alakhov, V.Y., Kabanov, A.V.: Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J. Control. Release. 142, 89 (2010)
  • Kan, P.L., Schätzlein, A.G., Uchegbu, I.F.: Polymers used for the delivery of genes in gene therapy. In: Uchegbu, I.F., Schätzlein, A.G. (eds.) Polymers in Drug Delivery, p. 183. CRC/Taylor and Francis, Boca Raton (2006)
  • Yue, Y., Wu, C.: Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 1, 152 (2013)