Supercritical CO2 technology for one-pot foaming and sterilization of polymeric scaffolds for bone regeneration

  1. García-González, Carlos A.
  2. Santos-Rosales, Víctor
  3. Magariños, Beatriz
  4. Suárez-González, Javier 1
  5. Fariña, José B. 1
  6. Starbird, Ricardo
  7. Alvarez-Lorenzo, Carmen 2
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
International Journal of Pharmaceutics

ISSN: 0378-5173

Ano de publicación: 2021

Volume: 605

Páxinas: 120801

Tipo: Artigo

DOI: 10.1016/J.IJPHARM.2021.120801 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: International Journal of Pharmaceutics

Resumo

Sterilization is a quite challenging step in the development of novel polymeric scaffolds for regenerative medicine since conventional sterilization techniques may significantly alter their morphological and physicochemical properties. Supercritical (sc) sterilization, i.e. the use of scCO2 as a sterilizing agent, emerges as a promising sterilization method due to the mild operational conditions and excellent penetration capability. In this work, a scCO2 protocol was implemented for the one-pot preparation and sterilization of poly(-caprolactone) (PCL)/poly(lactic-co-glycolic acid) (PLGA) scaffolds. The sterilization conditions were established after screening against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) vegetative bacteria and spores of Bacillus stearothermophilus, Bacillus pumilus and Bacillus atrophaeus. The transition from the sterilization conditions (140 bar, 39 °C) to the compressed foaming (60 bar, 26 °C) was performed through controlled depressurization (3.2 bar/min) and CO2 liquid flow. Controlled depressurization/pressurization cycles were subsequently applied. Using this scCO2 technology toolbox, sterile scaffolds of well-controlled pore architecture were obtained. This sterilization procedure successfully achieved not only SAL-6 against well-known resistant bacteria endospores but also improved the scaffold morphologies compared to standard gamma radiation sterilization procedures.

Referencias bibliográficas

  • Abbasi, (2020), J. Sci. Adv. Mater. Devices, 5, pp. 1, 10.1016/j.jsamd.2020.01.007
  • Arciola, (2018), Nat. Rev. Microbiol., 16, pp. 397, 10.1038/s41579-018-0019-y
  • Association for the Advancement of Medical Instrumentation, American National Standards Institute, International Organization for Standardization, 2008. Biological evaluation of medical devices. Part 7. Association for the Advancement of Medical Instrumentation, Arlington, VA.
  • Athanasiou, (2000), Tissue Eng., 6, pp. 361, 10.1089/107632700418083
  • Bosworth, (2012), J. Polym. Sci. Part B Polym. Phys., 50, pp. 870, 10.1002/polb.23072
  • Checinska, (2015), Annu. Rev. Food Sci. Technol., 6, pp. 351, 10.1146/annurev-food-030713-092332
  • Chen, (2019), J. Supercrit. Fluids, 143, pp. 72, 10.1016/j.supflu.2018.07.029
  • Cottam, (2009), Med. Eng. Phys., 31, pp. 221, 10.1016/j.medengphy.2008.07.005
  • Dai, (2016), J. Tissue Eng., 7, 10.1177/2041731416648810
  • Dash, (2012), J. Controlled Release, 158, pp. 15, 10.1016/j.jconrel.2011.09.064
  • Davison, (2018), PLGA. Radiat. Phys. Chem., 143, pp. 27, 10.1016/j.radphyschem.2017.09.009
  • Deng, (2020), Adv. Healthc. Mater., 9, pp. 2000353, 10.1002/adhm.202000353
  • Di Maio, (2018), J. Supercrit. Fluids, 134, pp. 157, 10.1016/j.supflu.2017.11.013
  • Diaz-Gomez, (2016), Carbohydr. Polym., 142, pp. 282, 10.1016/j.carbpol.2016.01.051
  • Diaz-Gomez, (2016), RSC Adv., 6, pp. 70510, 10.1039/C6RA09369H
  • Donati, (2012), Biomacromolecules, 13, pp. 1152, 10.1021/bm300053d
  • Dwivedi, (2020), J. Oral Biol. Craniofacial Res., 10, pp. 381, 10.1016/j.jobcr.2019.10.003
  • Feng, (2020), Mater. Des., 193, 10.1016/j.matdes.2020.108773
  • García-González, (2015), Bioconjug. Chem., 26, pp. 1159, 10.1021/bc5005922
  • García-González, C.A., Diaz-Gomez, L., Alvarez-Lorenzo, C., Concheiro, A., 2015b. System for administering biologically active substances produced by foaming techniques using compressed gases or supercritical fluids, WO2017013288A1 (23/07/2015).
  • Go, (2020), Biomater. Sci., 8, pp. 937, 10.1039/C9BM01864F
  • Goimil, (2018), J. CO2 Util., 24, pp. 89, 10.1016/j.jcou.2017.12.012
  • Gülden, (2010), Free Radic. Biol. Med., 49, pp. 1298, 10.1016/j.freeradbiomed.2010.07.015
  • Hâncu, (2002), Ind. Eng. Chem. Res., 41, pp. 4466, 10.1021/ie0108752
  • Hedayati, (2020), Polym. Test., 83, 10.1016/j.polymertesting.2020.106347
  • Ho, (2006), Biomaterials, 27, pp. 1362, 10.1016/j.biomaterials.2005.08.035
  • Holy, (2000), Biomaterials, 22, pp. 25, 10.1016/S0142-9612(00)00136-8
  • Horakova, (2018), Mater. Sci. Eng. C, 92, pp. 132, 10.1016/j.msec.2018.06.041
  • Hsiao, (2012), Polym. Degrad. Stab., 97, pp. 715, 10.1016/j.polymdegradstab.2012.02.015
  • ISO 10993-5:2009, n.d. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. International Organization for Standardization, 2009.
  • ISO 11135:2014, n.d. Sterilization of health-care products -- Ethylene oxide -- Requirements for the development, validation and routine control of a sterilization process for medical devices. 2014.
  • ISO 11137-1:2006/Amd.1:2013, n.d. Sterilization of health care products -- Radiation -- Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices.” 2006.
  • ISO 14937:2009, n.d. Sterilization of health care products — General requirements for characterization of a sterilizing agent and the development, validation and routine control of a sterilization process for medical devices. International Organization for Standardization, 2009.
  • ISO 17665-1:2006, n.d. Sterilization of health care products -- Moist heat -- Part 1: Requirements for the development, validation and routine control of a sterilization process for medical devices.” 2006.
  • Jodati, (2020), Ceram. Int., 46, pp. 15725, 10.1016/j.ceramint.2020.03.192
  • Johnson, (2015), Ann. Biomed. Eng., 43, pp. 515, 10.1007/s10439-014-1205-3
  • Kamihira, (1987), Agric. Biol. Chem., 51, pp. 407
  • Lee, (2019), Orthod. Craniofac. Res., 22, pp. 127, 10.1111/ocr.12261
  • Li, (2017), J. Orthop. Res., 10.1002/jor.23656
  • Mahaseth, (2017), Mutat. Res. Mutat. Res., 773, pp. 274, 10.1016/j.mrrev.2016.08.006
  • Makadia, (2011), Polymers, 3, pp. 1377, 10.3390/polym3031377
  • Nguyen, (2011), J. Arthroplasty, 26, pp. 303, 10.1016/j.arth.2010.03.032
  • Nichols, (2019), Eye Contact Lens Sci. Clin. Pract., 45, pp. 69, 10.1097/ICL.0000000000000542
  • Ribeiro, (2019), J. Biomed. Mater. Res. B Appl. Biomater.
  • Rochford, (2012), Clin. Microbiol. Infect., 18, pp. 1162, 10.1111/j.1469-0691.2012.04002.x
  • Sahena, (2009), J. Food Eng., 95, pp. 240, 10.1016/j.jfoodeng.2009.06.026
  • Salerno, (2017), Biofabrication, 9, 10.1088/1758-5090/aa78c5
  • Santos-Rosales, (2019), Molecules, 24, pp. 871, 10.3390/molecules24050871
  • Santos-Rosales, (2020), J. Supercrit. Fluids, 166, 10.1016/j.supflu.2020.105012
  • Santos-Rosales, (2020), Polymers, 12, pp. 533, 10.3390/polym12030533
  • Seddighian, (2021), Prog. Biomater., 10, pp. 65, 10.1007/s40204-021-00153-8
  • Shahabi, (2014), Sci. World J., 2014, pp. 1, 10.1155/2014/420616
  • Shieh, (2009), J. Microbiol. Methods, 76, pp. 247, 10.1016/j.mimet.2008.11.005
  • Shintani, (2017), Biocontrol Sci., 22, pp. 1, 10.4265/bio.22.1
  • Stone, (2006), Antioxid. Redox Signal., 8, pp. 243, 10.1089/ars.2006.8.243
  • Tipnis, (2018), Int. J. Pharm., 544, pp. 455, 10.1016/j.ijpharm.2017.12.003
  • Rutala, W.A., Weber, D.J., (HICPAC) Healthcare Infection Control Practices Advisory Committee, 2008. Guideline for Disinfection and Sterilization in Healthcare Facilities. Centers for Disease Control and Prevention. 2008, n.d.
  • Wang, (2020), Mater. Sci. Eng. C, 106, 10.1016/j.msec.2019.110186
  • Wang, (2020), ACS Omega, 5, pp. 22520, 10.1021/acsomega.0c03127
  • White, (2006), J. Biotechnol., 123, pp. 504, 10.1016/j.jbiotec.2005.12.033
  • White, (2012), Acta Biomater., 8, pp. 61, 10.1016/j.actbio.2011.07.032
  • Woodruff, (2010), Prog. Polym. Sci., 35, pp. 1217, 10.1016/j.progpolymsci.2010.04.002
  • Zhang, (2006), J. Microbiol. Methods, 66, pp. 479, 10.1016/j.mimet.2006.01.012
  • Zhang, (2006), J. Supercrit. Fluids, 38, pp. 268, 10.1016/j.supflu.2006.02.015
  • Zhang, (2006), J. Supercrit. Fluids, 38, pp. 354, 10.1016/j.supflu.2005.05.005
  • Zhao, (2019), Mater. Sci. Eng. C, 105, 10.1016/j.msec.2019.110041