Medium-term influence of tetracyclines on total and specific microbial biomass in cultivated soils of Galicia (NW Spain)

  1. V. Santás-Miguel 1
  2. M. Díaz-Raviña 2
  3. A. Martín 2
  4. E. García-Campos 2
  5. A. Barreiro 2
  6. A. Núñez-Delgado 3
  7. M.J. Fernández-Sanjurjo 3
  8. E. Álvarez-Rodríguez 3
  9. M. Arias-Estévez 4
  10. D. Fernández-Calviño 4
  1. 1 Facultade de Ciencias, Universidade de Vigo
  2. 2 Instituto de Investigaciones Agrobiológicas de Galicia (IIAG-CSIC)
  3. 3 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  4. 4 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

Journal:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Year of publication: 2020

Volume: 10

Issue: 3

Pages: 217-232

Type: Article

DOI: 10.3232/SJSS.2020.V10.N3.05 DIALNET GOOGLE SCHOLAR

More publications in: Spanish Journal of Soil Science: SJSS

Abstract

This work examines the results of a soil incubation experiment in the laboratory, under controlled conditions of humidity and temperature. The purpose was to determine the medium-term influence of the presence of antibiotics on the total and specific microbial biomass, determined by means of the phospholipid fatty acids (PLFAs) analysis (total microbial biomass, and specific fungal, bacterial, actinobacterial, Gram-negative bacterial and Gram-positive bacterial biomass), as well as the relationship between some of these groups (fungal biomass/bacterial biomass, Gram-negativebacterial /Gram-positive bacterial). The experiment was performed with four different cultivated soils with a similar pH but different organic matter (OM) content, to which eight doses of three antibiotics of the tetracycline group (tetracycline, oxytetracycline and chlorotetracycline) were added. Microbial biomass measurements (total and specific groups) were performed after 42 days of incubation. As expected, the total and specific microbial biomass values were different in the four soils studied. Both the total and the specific microbial biomass showed a similar response to the presence of antibiotics, although in several cases the data were inconsistent and difficult to interpret. In general, in all soils the addition of chlorotetracycline and tetracycline slightly modified or increased, to a greater or lesser extent, the values of both total and specific microbial biomass, particularly at higher doses. However, in certain cases, biomass values decreased due to the addition of the highest dose of oxytetracycline. With regard to fungal/bacterial and Grambacteria/Gram+ bacterial biomass ratios, values slightly changed after the addition of the antibiotics.

Bibliographic References

  • Allen DE, Singh BP, Dalal RC. 2011. Soil health indicators under climate change: A review of current knowledge. In: Singh BP, Cowie AL, Chan KY, editors. Soil Health and Climate Change. Heidelberg: Springer-Verlag, Berling. p. 25-35.
  • Alvarenga P, Gonçalves AP, Fernández RM, de Varennes A, Vallini G, Duarte E, Cunha-Quecha AC. 2009. Organic residues as immobilizing agents in aided phytostabilisation: I. Effects on soil chemical characteristics. Chemosphere 74:1292-1300.
  • Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez A, Núñez-Delgado A, Fernández-Calviño D. 2018. By-products as an amendment of a mine soil: effects on microbial biomass determined using phospholipid fatty acids. Spanish J Soil Sci. 8:1-11.
  • Bååth E, Díaz-Raviña M, Frostegård Å, Campbell D, Colin CP. 1998. Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol. 64:238-245.
  • Barreiro A, Martín A, Carballas T, Díaz-Raviña M. 2010. Response of soil microbial communities to fire and firefighting chemicals. Sci Total Environ. 408:6172-6178.
  • Basanta R, de Varennes A, Díaz-Raviña M. 2017. Microbial community structure and biomass of a mine soil with different organic and inorganic treatments and native plants. J Soil Sci Plant Nutr. 17:839-852.
  • Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T, Lawrence JR, Lazorchak J, Schönfield J, Snape JR, Zhu YG, Toop E. 2015. Ecotoxicological assessment of antibiotics: a call for improved consideration of microorganisms. Environ Int. 85:189-205.
  • Briceño G, Palma G, Durán N. 2007. Influence of organic amendment on the biodegradation and movement of pesticides. Crit Rev Sci Tec. 37:233-271.
  • Burgos P, Madejón E, Cabrera F. 2002. Changes in soil organic matter, enzymatic activities and heavy metal availability induced by application of organic residues. Develop Soil Sci. 28:353-362.
  • Caracciolo AB, Topp E, Grenni P. 2015. Pharmaceuticals in the environment: Biodegradation and effects on microbial communities. A review. J Pharm. 106:25-36.
  • Chen W, Liu W, Pan N, Jiao W, Wang M. 2013. Oxytetracycline on functions and structure of soil microbial community. J Soil Sci Plant Nutr. 13:967-975.
  • Conde-Cid M, Álvarez-Esmoris C, Paradelo-Núñez R, Nóvoa-Muñoz JC, Arias-Estévez M, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ, Núñez-Delgado A. 2018a. Ocurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J Clean Prod. 197:491-500.
  • Conde-Cid M, Fernández-Calviño F, Nóvoa-Muñoz JC, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo MJ, Nuñez-Delgado A, Álvarez-Rodríguez E. 2018b. Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark. Sci Total Environ. 635:1520-1529.
  • Cycón M, Mrozik A, Piotowska-Seget Z. 2019. Antibiotic in the soil environment-Degradation and their impact on microbial activity and diversity: a review. Front Microbiol 10. https://0.3389/fmicb.2019.00338.
  • De Nobili M, Contin M, Mondini C, Brookes PC. 2001. Soil microbial biomass in triggered into activity by trace amounts of substrate. Soil Biol Biochem. 32:1163-1170.
  • Díaz-Raviña M, Bååth E, Martín A, Carballas T. 2006. Microbial community structure in forest soils treated with a fire retardant. Biol Fertil Soils 42:465-471.
  • Díaz-Raviña M, Carballas T, Acea MJ. 1988. Microbial biomass and metabolic activity in four acid soils. Soil Biol Biochem. 30:817-823.
  • Fageria NK. 2012. Role of organic matter in maintaining sustainability of cropping systems. 2012. Commun Soil Sci Plant 43:2063-2013.
  • Fernández-Calviño D, Bermúdez-Couso A, Arias-Estévez M, Nóvoa-Muñoz JC, Fernández Sanjurjo MJ, Álvarez-Rodríguez E, Nuñez-Delgado A. 2015. Kinetics of tetracycline, oxitetracycline and chlortetracycline adsorption and desorption on two acid soils. Environ Sci Pollut Res. 22:425-433.
  • Frostegård A, Bååth E. 1996. The use of the phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59-65.
  • Frostegård Å, Tunlid A, Bååth E. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis. Soil Biol Biochem. 25:723-730.
  • Gregorich EG, Carter MR, Angers DA, Monreal B, Ellert H. 1994. Towards a minimum data set to assess soil organic matter in agricultural soil. C J Soil Sci. 74:367-385.
  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Brunhn S. 2008. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem. 40:1583-1591.
  • Hund-Rinke K, Simon M, Lukow T. 2004. Effects of tetracyclines on the soil microflora: function, diversity and resistence. J Soil Sediment 4:11-16.
  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome: FAO.
  • Lakhdar A, Scalza R, Sxotti R, Rao MA, Jedi N, Gianfreda L, Abdelly C. 2010. The effect of composts and sewage sludge on soil biological activities in salt affected soil. Soil Nutri Ve. 10:40-47.
  • Lehman J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528:60-65.
  • Lichtfouse E, editor. 2009. Sustainable Agriculture Reviews 1. Organic Farming Pest control and remediation of soil pollutants. London: Springer. 418 p.
  • Liu X, Horbet SJ, Hashemi AM, Zhing X, Ding G. 2006. Effects of agricultural management on soil organic matter and carbon transformation- a review. Plant Soil Environ. 52:531-543.
  • Mahía J, Cabaneiro A, Carballas T, Díaz-Raviña M. 2008. Microbial biomass and C mineralization in agricultural soils as affected by atrazine addition Biol Fertil Soils 45:99-105.
  • Mahía J, Díaz-Raviña M. 2007. Atrazine degradation and residues distribution in two acid soils from temperate humid zone. J Environ Qual. 36:826-831.
  • Mahía J, Martín A, Bååth E, González-Prieto SJ, Díaz-Raviña, M. 2011. Biochemical properties and community structure of five different incubated soils untreated and treated with atrazine. Biol Fertil Soils 47:577-584.
  • Meisner A, Bååth E, Rousk J. 2013. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol Biochem. 66:188-192.
  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. 2003. Microbial diversity and soil functions. Eur J Soil Sci. 54:655-670.
  • Petruzzelli G. 1989. Recycling wastes in agriculture: heavy metal bioavailability. Agr Ecosystems Environ. 27:493-503.
  • Rousk J, Demoling LA, Bååth E. 2009. Contrasting short-term antibiotic effects on respiration and bacterial growth compromises the validity of the selective respiratory inhibition technique to distinguish fungi and bacteria. Microb Ecol. 58:75-85.
  • Rousk J, Demoling LD, Bahr A, Bååth E. 2008. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol. 63:350-358.
  • Santás-Miguel V, Cutillas-Barreiro L, Nóvoa-Muñoz JC, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A, Fernández-Calviño D. 2018a. By-products as an amendment of a mine soil: effects on microbial biomass determined using phospholipid fatty acids. Spanish J Soil Sci. 8:1-11.
  • Santás-Miguel V, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Carballas T, Díaz-Raviña M, Arias-Estévez M, Fernández-Calviño D. 2018b. Effect of tetracycline on soil bacterial communities. In: Abstracts fo the VIII Congreso Ibérico de las Ciencias del Suelo; 2018 Jun 20-22; Donostia, San Sebastián, Spain; p. 417-420.
  • Santás-Miguel V, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Díaz-Raviña M, Arias-Estévez M, Fernández-Calviño D. 2020a. Use of biomass ash to reduce toxicity affecting soil bacterial community growth due to tetracycline antibiotics. J Environ Manage. 269:110838.
  • Santás-Miguel V, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Díaz-Raviña M, Arias-Estévez M, Fernández-Calviño D. 2020b. Interactions between soil properties and tetracycline toxicity affecting to bacterial community growth in agriculture soils. Appl Soil Ecol. 147:103437.
  • Sarmah AK, Meyer MT, Boxall ABA. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725-759.
  • Villar MC, Petrikova V, Díaz-Raviña M, Carballas T. 2004. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma 122:73-82