Vulnerabilidad de las costas de Galicia a los temporales marinos en el contexto del cambio global

  1. Gómez-Pazo, Alejandro
  2. Pérez-Alberti, Augusto
Revista:
Semata: Ciencias sociais e humanidades

ISSN: 1137-9669 2255-5978

Ano de publicación: 2017

Título do exemplar: Catástrofes y desastres

Número: 29

Páxinas: 117-142

Tipo: Artigo

DOI: 10.15304/S.29.4210 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Semata: Ciencias sociais e humanidades

Resumo

The coast of Galicia has more than 2.100 km for length. It is characterized by the chaining of rocky and sandy coast and it’s located in a high energy context, subject to the passage of depressions and marine storms. In the context of global change, it is essential to know the dynamics that interact in the Galician coast to identify the most vulnerable sectors in the present and prevent potential negative consequences in the future. This study analyzes the vulnerability of coastal focusing on physical variables that affect at the first 100 meters of the coastal zone: slope, altitude, orientation, type of coast, lithology, change in the sea level, average wave height and the distance from de 20 meters bathymetric line. A coastal vulnerability index (CVI) is generated from the GIS tools with values between 1 and 5, from lower to higher vulnerability.This index shows that 4.52% of the Galician coast territory presents values of high or very high vulnerability, mainly associated with sedimentary zones, while a majority of the coast (57,96%), frequently rocky coasts presented values of low vulnerability.

Referencias bibliográficas

  • Adger, W.N., 2006. Vulnerability. Glob. Environ. Chang. 16, 268-281. doi:10.1016/j. gloenvcha.2006.02.006
  • Anfuso, G., Martínez-del-Pozo, J.A., Rangel-Buitrago, N., 2010. Evaluación de la vulnerabilidad costera mediante el uso de herramientas SIG y métodos multicriterio: Ejemplos del litoral de Italia, Marruecos y Colombia. XIV Semin. Nac. CIencias y Tecnol. del Mar 405-410.
  • Anfuso, G., Gracia, F.J., Battocletti, G., 2013. Determination of Cliffed Coastline Sensitivity and Associated Risk for Human Structures: A Methodological Approach. J. Coast. Res. 292, 1292-1296. doi:10.2112/JCOASTRES-D-12-00262.1
  • Ashraful Islam, M., Mitra, D., Dewan, A., Akhter, S.H., 2016. Coastal multi-hazard vulnerability assessment along the Ganges deltaic coast of Bangladesh-A geospatial approach. Ocean Coast. Manag. 127, 1-15. doi:10.1016/j.ocecoaman.2016.03.012
  • Bagdanavičiute, I., KelpÅ¡aite, L., Soomere, T., 2015. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast. Manag. 104, 124-135. doi:10.1016/j.ocecoaman.2014.12.011
  • Barbaro, G., 2016. Master Plan of solutions to mitigate the risk of coastal erosion in Calabria (Italy), a case study. Ocean Coast. Manag. 132, 24-35. doi:10.1016/j.ocecoaman.2016.08.001
  • Ciccarelli, D., Pinna, M.S., Alquini, F., Cogoni, D., Ruocco, M., Bacchetta, G., Sarti, G., Fenu, G., 2017. Development of a coastal dune vulnerability index for Mediterranean ecosystems: A useful tool for coastal managers? Estuar. Coast. Shelf Sci. 187, 84-95. doi:10.1016/j.ecss.2016.12.008
  • Clark, G.E., Moser, S.C., Ratick, S.J., Dow, K., Meyer, W.B., Emani, S., Jin, W., Kasperson, J.X., Kasperson, R.E., Schwarz, H.E., 1998. Assessing the vulnerability of coastal communities to extreme storms: the case of Revere, MA., USA. Mitig. Adapt. Strateg. Glob. Chang. 3, 59-82. doi:10.1023/A:1009609710795
  • Costas, S., Alejo, I., Vila-Concejo, A., Nombela, M.A., 2005. Persistence of storm-induced morphology on a modal low-energy beach: A case study from NW-Iberian Peninsula. Mar. Geol. 224, 43-56. doi:10.1016/j.margeo.2005.08.003
  • Costas, S., Sobrino, C.M., Alejo, I., Pérez-Arlucea, M., 2009. Holocene evolution of a rock-bounded barrier-lagoon system, Cíes Islands, northwest Iberia. Earth Surf. Process. Landforms 34, 1575-1586. doi:10.1002/esp.1849
  • Del Río, L., Gracia, F.J., 2007. Análisis de la vulnerabilidad de los acantilados atlánticos de la provincia de Cádiz ande la erosión costera. Cuaternario y Geomorfol. 21 (1), 87-101.
  • Del Río, L., Gracia, F.J., 2009. Erosion risk assessment of active coastal cliffs in temperate environments. Geomorphology 112, 82-95. doi:10.1016/j.geomorph.2009.05.009
  • Denner, K., Phillips, M.R., Jenkins, R.E., Thomas, T., 2015. A coastal vulnerability and environmental risk assessment of Loughor Estuary, South Wales. Ocean Coast. Manag. 116, 478-490. doi:10.1016/j.ocecoaman.2015.09.002
  • Elliott, M., Cutts, N.D., Trono, A., 2014. A typology of marine and estuarine hazards and risks as vectors of change: A review for vulnerable coasts and their management. Ocean Coast. Manag. 93, 88-99. doi:10.1016/j.ocecoaman.2014.03.014
  • Feal-Pérez, A., Blanco-Chao, R., Ferro-Vázquez, C., Martínez-Cortizas, A., Costa-Casais, M., 2014. Late-Holocene storm imprint in a coastal sedimentary sequence (Northwest Iberian coast). The Holocene 24, 477-488. doi:10.1177/0959683613520257
  • Fraile Jurado, P., Ojeda Zújar, J., 2012. Evaluación de la peligrosidad asociada al aumento de la superficie inundable por la subida del nivel medio del mar en la costa entre Cádiz y Tarifa. GeoFocus 12, 329-348.
  • Frazier, T.G., Wood, N., Yarnal, B., Bauer, D.H., 2010. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida. Appl. Geogr. 30, 490-505. doi:10.1016/j.apgeog.2010.05.005
  • Gomez-Pazo, A., Perez-Alberti, A., 2016. Application of GIS in the morphological classification of types of coast: the example of Cies Islands (Galicia, NW Iberian Peninsula). GOT – Geogr. Spat. Plan. J. 161-185. doi:10.17127/got/2016.9.008
  • Gornitz, V.M., Daniels, R.C., White, T.W., Birdwell, K.R., 1994. The Development of a Coastal Risk Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast. J. Coast. Res. 327-338.
  • Guneroglu, A., 2015. Coastal changes and land use alteration on Northeastern part of Turkey. Ocean Coast. Manag. 118, 225-233. doi:10.1016/j.ocecoaman.2015.06.019
  • Kumar, T.S., Mahendra, R.S., Nayak, S., Radhakrishnan, K., Sahu, K.C., 2010. Coastal Vulnerability Assessment for Orissa State, East Coast of India. J. Coast. Res. 263, 523-534. doi:10.2112/09-1186.1
  • Lohmann, H., 2016. Comparing vulnerability and adaptive capacity to climate change in individuals of coastal Dominican Republic. Ocean Coast. Manag. 132, 111-119. doi:10.1016/j.ocecoaman.2016.08.009
  • Nguyen, T.T.X., Bonetti, J., Rogers, K., Woodroffe, C.D., 2016. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean Coast. Manag. 123, 18-43. doi:10.1016/j. ocecoaman.2015.11.022
  • Ojeda Zújar, J., Álvarez Francoso, J.I., Martín Cajaraville, D., Fraile Jurado, P., 2009. El uso de las TIG para el cálculo del indice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza (España). GeoFocus (Artículos), no 9, p. 83-100. ISSN 1578-5157 9, 83-100.
  • Palmer, B., Parak, O., 2009. A Coastal Vulnerability Index for KwaZulu-Natal, South Africa 1-7.
  • Pérez-Alberti, A., Pires, A., Freitas, L., Chaminé, H., 2013. Shoreline change mapping along the coast of Galicia, Spain. Proc. Inst. Civ. Eng. 166, 125.
  • Pérez-Alberti, A., Trenhaile, A.S., 2015a. Clast mobility within boulder beaches over two winters in Galicia, northwestern Spain. Geomorphology 248, 411-426. doi:10.1016/j.geomorph.2015.08.001
  • Pérez-Alberti, A., Trenhaile, A.S., 2015b. An initial evaluation of drone-based monitoring of boulder beaches in Galicia, north-western Spain. Earth Surf. Process. Landforms 40, 105-111. doi:10.1002/esp.3654
  • POLGalicia, 2010. Plan de Ordenación do Litoral de Galicia. Consellaría de Medio Ambiente, Territorio e Infraestruturas, Santiago de Compostela.
  • Roig-Munar, F.X., Martin-Prieto, J.A., Rodriguez-Perea, A., Pons, G.X., Gelabert, B., Mir-Gual, M., 2012. Risk Assessment of Beach-Dune System Erosion: Beach Management Impacts on the Balearic Islands. J. Coast. Res. 28, 1488-1499. doi:10.2112/ jcoastres-d-11-00187.1
  • Sahu, K., Beach, W.P., 2010. Coastal vulnerability assessment for Orissa State, east coast of India. J. Coast. Res. 523-534. doi:10.2307/40605480
  • Shaw, J., Taylor, R.B., Forbes, D.L., Ruz, M.H., Solomon, S., 1998. Sensitivity of the coasts of Canada to sea-level rise. Bull. Geol. Surv. Canada 1-79.
  • Silva, S.F., Martinho, M., Capitão, R., Reis, T., Fortes, C.J., Ferreira, J.C., 2017. An index-based method for coastal-flood risk assessment in low-lying areas (Costa de Caparica, Portugal). Ocean Coast. Manag. 144, 90-104. doi:10.1016/j.ocecoaman.2017.04.010
  • Spalding, M.D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L.Z., Shepard, C.C., Beck, M.W., 2014. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50-57. doi:10.1016/j.ocecoaman.2013.09.007
  • Torresan, S., Critto, A., Rizzi, J., Marcomini, A., 2012. Assessment of coastal vulnerability to climate change hazards at the regional scale: The case study of the North Adriatic Sea. Nat. Hazards Earth Syst. Sci. 12, 2347-2368. doi:10.5194/nhess-12-2347-2012
  • Trenhaile, A.S., Alberti, A.P., Cortizas, A.M., Casais, M.C., Chao, R.B., 1999. Rock coast inheritance: an example from Galicia, northwestern Spain. Earth Surf. Process. Landforms 24, 605-621. doi:AID-ESP977>3.0.CO;2-1
  • Yanes Luque, A., Marzol Jaén, M.V., 2017. Los temporales marinos como episodios de riesgo en Tenerife a través de la prensa (1985-2003). Rev. la Soc. Geológica España 22, 95-104.