A coupled steady thermo-electromagnetic problem in axisymmetric geometries. Mathematical and numerical analysis

  1. Gómez, Dolores 12
  2. López-Rodríguez, Bibiana 3
  3. Salgado, Pilar 12
  4. Venegas, Pablo 45
  1. 1 Departamento de Matemática Aplicada, Universidade de Santiago de Compostela , E-15782 Santiago de Compostela, Spain
  2. 2 CITMAga, Galician Centre for Mathematical Research and Technology , E-15782 Santiago de Compostela, Spain
  3. 3 Departamento de Matemáticas, Universidad Nacional de Colombia , sede Medellín, Colombia
  4. 4 GIMNAP , Departamento de Matemática, , Concepción 4051381, Chile
  5. 5 Universidad del Bío-Bío , Departamento de Matemática, , Concepción 4051381, Chile
Revista:
IMA Journal of Numerical Analysis

ISSN: 0272-4979 1464-3642

Ano de publicación: 2024

Tipo: Artigo

DOI: 10.1093/IMANUM/DRAE056 WoS: WOS:001314137100001 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: IMA Journal of Numerical Analysis

Resumo

This paper focuses on the analysis of a steady thermo-electromagnetic problem related to the modeling of induction heating processes. Taking advantage of the cylindrical symmetry, the original three-dimensional problem can be reduced to a two-dimensional one on a meridional section, provided that the current density has only the azimuthal component. A variational formulation is presented in appropriately weighted Sobolev spaces, and the existence of a solution is established by employing a fixed-point argument. Furthermore, uniqueness and additional regularity results are proved under reasonable assumptions on the physical coefficients. A finite element approximation combined with a fixed-point iteration scheme is proposed for the numerical solution of the problem. A priori error estimates are obtained to quantify the accuracy of the approximation. Finally, numerical results are reported to validate the theoretical estimates and assess the performance of the method in a physical application.

Información de financiamento

Financiadores

Referencias bibliográficas

  • Amrouche, (1998), Math. Methods Appl. Sci., 21, pp. 823, 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
  • Belhachmi, (2006), Numer. Math., 105, pp. 217, 10.1007/s00211-006-0039-9
  • Bermúdez, (2007), Adv. Comput. Math., 26, pp. 39, 10.1007/s10444-005-7470-9
  • Bermúdez, (2009), Appl. Numer. Math., 59, pp. 2082, 10.1016/j.apnum.2008.12.005
  • Bermúdez, (2014), Mathematical Models and Numerical Simulation in Electromagnetism, 10.1007/978-3-319-02949-8
  • Bermúdez, (2022), J. Sci. Comput., 91, pp. 26, 10.1007/s10915-022-01780-4
  • Bermúdez, (1999), Quart. Appl. Math., 57, pp. 621, 10.1090/qam/1724296
  • Bermúdez, (1998), Ann. Inst. H. Poincaré C Anal. Non Linéaire, 15, pp. 399, 10.1016/s0294-1449(98)80029-2
  • Bermúdez, (2010), IMA J. Numer. Anal., 30, pp. 654, 10.1093/imanum/drn063
  • Bernardi, (1999), Spectral Methods for Axisymmetric Domains
  • Bossavit, (1998), Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements
  • Chaboudez, (1997), IEEE T. Magn., 33, pp. 739, 10.1109/20.560107
  • Chang, (2009), J. Comput. Appl. Math., 225, pp. 467, 10.1016/j.cam.2008.08.023
  • Chovan, (2017), Comput. Methods Appl. Mech. Eng., 321, pp. 294, 10.1016/j.cma.2017.03.045
  • Cimatti, (1988), IMA J. Appl. Math., 40, pp. 15, 10.1093/imamat/40.1.15
  • Copeland, (2006), Numer. Linear Algebra Appl., 13, pp. 733, 10.1002/nla.495
  • Ervin, (2013), SIAM J. Numer. Anal., 51, pp. 1421, 10.1137/120861631
  • Gallouët, (1994), Appl. Math. Lett., 7, pp. 49, 10.1016/0893-9659(94)90030-2
  • Gopalakrishnan, (2006), Math. Comp., 75, pp. 1697, 10.1090/S0025-5718-06-01884-9
  • Holst, (2010), BIT, 50, pp. 781, 10.1007/s10543-010-0287-z
  • Howison, (1993), J. Math. Anal. Appl., 174, pp. 573, 10.1006/jmaa.1993.1142
  • Jensen, (2013), BIT, 53, pp. 475
  • Kinderlehrer, (2000), An Introduction to Variational Inequalities and Their Applications, 10.1137/1.9780898719451
  • Loula, (2001), Comput. Appl. Math., 20, pp. 321
  • Mercier, (1982), RAIRO, Anal. Numér., 16, pp. 405, 10.1051/m2an/1982160404051
  • Rudnev, (2017), Handbook of Induction Heating, 10.1201/9781315117485
  • Yousept, (2010), Ann. Acad. Rom. Sci. Ser. Math. Appl., 2, pp. 45
  • Zhu, (2011), Comput. Methods Appl. Mech. Eng., 200, pp. 1479, 10.1016/j.cma.2010.12.009