Soil Burn Severities Evaluation Using Micromorphology and Morphometry Traits After a Prescribed Burn in a Managed Forest

  1. Sol Moreno-Roso 1
  2. Bruno Chávez-Vergara 2
  3. Elizabeth Solleiro-Rebolledo 1
  4. Shatya Quintero 3
  5. Agustin Merino 4
  6. María del Mar Ruiz Rojas 5
  1. 1 Universidad Nacional Autónoma de México, Ciudad de México.
  2. 2 Universidad Nacional Autónoma de México, Ciudad de México. Laboratorio Nacional de Geoquímica y Mineralogía, Ciudad de México
  3. 3 Universidad de Guadalajara, Guadalajara, Jalisco, México
  4. 4 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  5. 5 Universidad Nacional Autónoma de México, Ciudad de México, México
Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Año de publicación: 2023

Volumen: 13

Número: 1

Tipo: Artículo

DOI: 10.3389/SJSS.2023.11488 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Spanish Journal of Soil Science: SJSS

Resumen

Prescribed burn is a tool that must imply low soil burn severity (SBS) levels; however, a wide range of soil impacts have been demonstrated because of the influence of very variable factors. The effects on biological, physical, and chemical soil properties are well reported in numerous studies; nonetheless, there are still questions about the effect of prescribed burns on soils at the micro-scale. As a result, an analysis of the link between micromorphological features and SBS does not currently exist. Thus, the main aim of the present study is to perform a micro-scale evaluation for complementing the SBS visual examination after prescribed burning in a managed pine forest in western Mexico. Morphometry and micromorphology analyses of mineral soil revealed that at low SBS levels, only the soil structure in the first centimeter is affected by prescribed burns. While at high SBS, the prescribed burn affected the first 2 cm, showing soil structure disturbance, ash filling porous, and soil aggregates getting reddish. Therefore, immediate actions have to be made by land managers after applying prescribed burns before the first rain to prevent post-fire surface soil erosion, particularly in bare soil patches where the burned aggregates are more susceptible to rain splash and runoff.

Referencias bibliográficas

  • Afif, E., and Oliveira, J. A. (2006). Efectos del Fuego Prescrito Sobre el Matorral en las Propiedades del Suelo. Investigaciones Agrarias. Sist. Recur. For. 15 (3), 262–270.
  • Agbeshie, A. A., Abugre, S., Atta-Darkwa, T., and Awuah, R. (2022). A Review of the Effects of Forest Fire on Soil Properties. J. For. Res. 33, 1419–1441. doi:10.1007/s11676-022-01475-4
  • Albalasmeh, A. A., Berli, M., Shafer, D. S., and Ghezzehei, T. A. (2013). Degradation of Moist Soil Aggregates by Rapid Temperature Rise Under Low Intensity Fire. Plant Soil 362, 335–344. doi:10.1007/s11104-012-1408-z
  • Alcañiz, M., Outeiro, L., Francos, M., and Úbeda, X. (2018). Effects of Prescribed Fires on Soil Properties: A Review. Sci. Total Environ. 613–614, 944–957. doi:10.1016/j.scitotenv.2017.09.144
  • Alfaro-Leranoz, A., Badia-Villas, D., Marti-Dalmau, C., Emran, M., Conte-Dominguez, A. P., and Ortiz-Perpiña, O. (2023). Long-Term Evolution of Shrub Prescribed Burning Effects on Topsoil Organic Matter and Biological Activity in the Central Pyrenees (NE-Spain). Sci. Total Environ. 888, 163994. doi:10.1016/j.scitotenv.2023.163994
  • Alperson-Afil, N. (2012). Archaeology of Fire: Methodological Aspects of Reconstructing Fire History of Prehistoric Archaeological Sites. Earth-Science Rev. 113, 111–119. doi:10.1016/j.earscirev.2012.03.012
  • Armas-Herrera, C. M., Martí, C., Badía, D., Ortiz-Perpiñá, O., Girona-García, A., and Mora, J. L. (2018). Short-Term and Midterm Evolution of Topsoil Organic Matter and Biological Properties After Prescribed Burning for Pasture Recovery (Tella, Central Pyrenees, Spain). Land Degrad. Dev. 29, 1545–1554. doi:10.1002/ldr.2937
  • Armas-Herrera, C. M., Martí, C., Badía, D., Ortiz-Perpiñá, O., Girona-García, A., and Porta, J. (2016). Immediate Effects of Prescribed Burning in the Central Pyrenees on the Amount and Stability of Topsoil Organic Matter. CATENA 147, 238–244. doi:10.1016/j.catena.2016.07.016
  • Arocena, J. M., and Opio, C. (2003). Prescribed Fire-Induced Changes in Properties of Sub-Boreal Forest Soils. Geoderma 113, 1–16. doi:10.1016/S0016-7061(02)00312-9
  • Badía, D., Esteban, J., Girona, A., Ortiz, O., and Poch, R. M. (2020). Topsoil Microstructure Changes After a Shrubland Prescribed Burn (Central Pyrenees, NE Spain). Sci. Total Environ. 748, 141253. doi:10.1016/j.scitotenv.2020.141253
  • Badía, D., López-García, S., Martí, C., Ortíz-Perpiñá, O., Girona-García, A., and Casanova-Gascón, J. (2017). Burn Effects on Soil Properties Associated to Heat Transfer Under Contrasting Moisture Content. Sci. Total Environ 601–602, 1119–1128. doi:10.1016/j.scitotenv.2017.05.254
  • Badía, D., and Martí, C. (2003b). Effect of Simulated Fire on Organic Matter and Selected Microbiological Properties of Two Contrasting Soils. Arid Land Res. Manag. 17, 55–69. doi:10.1080/15324980301594
  • Badía, D., and Martí, C. (2003a). Plant Ash and Heat Intensity Effects on Chemical and Physical Properties of Two Contrasting Soils. Arid Land Res. Manag. 17, 23–41. doi:10.1080/15324980301595
  • Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., et al. (2012). Microstratigraphic Evidence of In Situ Fire in the Acheulean Strata of Wonderwerk Cave, Northern Cape Province, South Africa. Proc. Natl. Acad. Sci. U.S.A. 109, E1215–E1220. doi:10.1073/pnas.1117620109
  • Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A. (2015). The Pyrogenic Carbon Cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298. doi:10.1146/annurev-earth-060614-105038
  • Bremner, J. M. (1996). “Nitrogen-Total,” in Methods of Soil Analysis (Madison, Wisconsin: Soil Science Society of America, Inc. and American Society of Agronomy, Inc.), 1085–1121. doi:10.2136/sssabookser5.3.c37
  • Cancelo-González, J., Cachaldora, C., Díaz-Fierros, F., and Prieto, B. (2014). Colourimetric Variations in Burnt Granitic Forest Soils in Relation to Fire Severity. Ecol. Indic. 46, 92–100. doi:10.1016/j.ecolind.2014.05.037
  • Canti, M. G., and Brochier, J. É. (2017). “Plant Ash,” in Archaeological Soil and Sediment Micromorphology. Editors C. Nicasio, and G. Stoops (Hoboken, NJ: John Wiley & Sons, Ltd), 147–154. doi:10.1002/9781118941065.ch17
  • Cerano-Paredes, J., Villanueva-Díaz, J., Cervantes-Martínez, R., Fulé, P., Yocom, L., Esquivel-Arriaga, G., et al. (2015). Historia de Incendios en un Bosque de Pino de la Sierra de Manantlán, Jalisco, México. Bosque (Valdivia) 36, 41–52. doi:10.4067/S0717-92002015000100005
  • Certini, G. (2005). Effects of Fire on Properties of Forest Soils: A Review. Oecologia 143, 1–10. doi:10.1007/s00442-004-1788-8
  • Chief, K., Young, M. H., and Shafer, D. S. (2012). Changes in Soil Structure and Hydraulic Properties in a Wooded-Shrubland Ecosystem Following a Prescribed Fire. Soil Sci. Soc. Am. J. 76, 1965–1977. doi:10.2136/sssaj2011.0072
  • CIE (1986). Colorimetry. 2nd ed. Wien: Publication/CIE. Comm. Internat. de l’éclairage.
  • Dannenmann, M., Willibald, G., Sippel, S., and Butterbach-Bahl, K. (2011). Nitrogen Dynamics at Undisturbed and Burned Mediterranean Shrublands of Salento Peninsula, Southern Italy. Plant Soil 343, 5–15. doi:10.1007/s11104-010-0541-9
  • DeBano, L. F., Eberlein, G. E., and Dunn, P. H. (1979). Effects of Burning on Chaparral Soils: I. Soil Nitrogen. Soil Sci. Soc. Am. J. 43, 504–509. doi:10.2136/sssaj1979.03615995004300030015x
  • DeBano, L. F., Neary, D. G., and Folliott, P. F. (1998). Fire’s Effects on Ecosystems. New York: J. Wiley.
  • DeBano, L. F. (2000). The Role of Fire and Soil Heating on Water Repellency in Wildland Environments: A Review. J. Hydrology 231–232, 195–206. doi:10.1016/S0022-1694(00)00194-3
  • DeBano, L. F. (1981). Water Repellent Soils: A State-Of-The-Art (No. PSW-GTR-46). Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. doi:10.2737/PSW-GTR-46
  • Fernandes, P. M., Davies, G. M., Ascoli, D., Fernández, C., Moreira, F., Rigolot, E., et al. (2013). Prescribed Burning in Southern Europe: Developing Fire Management in a Dynamic Landscape. Front. Ecol. Environ. 11. doi:10.1890/120298
  • Flores-Delgadillo, L., and Alcalá-Martínez, J. R. (2010). Manual de Procedimientos Analíticos. Mexico City: Instituto de Geología, Universidad Nacional Autónoma de México.
  • Gregorich, E. G., Monreal, C. M., Schnitzer, M., and Schulten, H. R. (1996). Transformation of Plant Residues Into Soil Organic Matter: Chemical Characterization of Plant Tissue, Isolated Soil Fractions, and Whole Soils. Soil Sci. 161, 680–693. doi:10.1097/00010694-199610000-00005
  • García-Oliva, F., Merino, A., Fonturbel, M. T., Omil, B., Fernández, C., and Vega, J. A. (2018). Severe Wildfire Hinders Renewal of Soil P Pools by Thermal Mineralization of Organic P in Forest Soil: Analysis by Sequential Extraction and 31P NMR Spectroscopy. Geoderma 309, 32–40. doi:10.1016/j.geoderma.2017.09.002
  • Giovannini, G., Lucchesi, S., and Giachetti, M. (1988). Effect of Heating on Some Physical and Chemical Parameters Related to Soil Aggregation and Erodibility. Soil Sci. 146, 255–261. doi:10.1097/00010694-198810000-00006
  • Girona-García, A., Badía-Villas, D., Martí-Dalmau, C., Ortiz-Perpiñá, O., Mora, J. L., and Armas-Herrera, C. M. (2018). Effects of Prescribed Fire for Pasture Management on Soil Organic Matter and Biological Properties: A 1-Year Study Case in the Central Pyrenees. Sci. Total Environ. 618, 1079–1087. doi:10.1016/j.scitotenv.2017.09.127
  • Girona-García, A., Ortiz-Perpiñá, O., and Badía-Villas, D. (2019). Dynamics of Topsoil Carbon Stocks After Prescribed Burning for Pasture Restoration in Shrublands of the Central Pyrenees (NE-Spain). J. Environ. Manag. 233, 695–705. doi:10.1016/j.jenvman.2018.12.057
  • Greene, R. S. B., Chartres, C. J., and Hodgkinson, K. C. (1990). The Effects of Fire on the Soil in a Degraded Semiarid Woodland.I. Cryptogam Cover and Physical and Micromorphological Properties. Soil Res. 28, 755. doi:10.1071/SR9900755
  • Hobley, E. U., Le Gay Brereton, A. J., and Wilson, B. (2017). Forest Burning Affects Quality and Quantity of Soil Organic Matter. Sci. Total Environ. 575, 41–49. doi:10.1016/j.scitotenv.2016.09.231
  • Hubbert, K. R., Preisler, H. K., Wohlgemuth, P. M., Graham, R. C., and Narog, M. G. (2006). Prescribed Burning Effects on Soil Physical Properties and Soil Water Repellency in a Steep Chaparral Watershed, Southern California, USA. Geoderma 130, 284–298. doi:10.1016/j.geoderma.2005.02.001
  • Huffman, E. W. D. (1977). Performance of a New Automatic Carbon Dioxide Coulometer. Microchem. J. 22, 567–573. doi:10.1016/0026-265X(77)90128-X
  • Huisman, D. J., Niekus, M. J. L. T., Peeters, J. H. M., Geerts, R. C. A., and Müller, A. (2019). Deciphering the Complexity of a ‘Simple’ Mesolithic Phenomenon: Indicators for Construction, Use and Taphonomy of Pit Hearths in Kampen (the Netherlands). J. Archaeol. Sci. 109, 104987. doi:10.1016/j.jas.2019.104987
  • Iverson, L., and Hutchinson, T. (2002). Soil Temperature and Moisture Fluctuations During and After Prescribed Fire in Mixed-Oak Forests, USA. Nat. Areas J. 22, 296–304.
  • Jardel, J. P., and Moreno, G. S. (2000). Programa de Manejo Forestal Para el Aprovechamiento del Ejido Ahuacapán, Municipio de Autlán, Jalisco. Autlán, Jalisco, México: IMECBIO- Universidad de Guadalajara/ECOFOR.
  • Kavdır, Y., Ekinci, H., Yüksel, O., and Mermut, A. R. (2005). Soil Aggregate Stability and 13C CP/MAS-NMR Assessment of Organic Matter in Soils Influenced by Forest Wildfires in Çanakkale, Turkey. Geoderma 129, 219–229. doi:10.1016/j.geoderma.2005.01.013
  • Kennard, D. K., and Gholz, H. L. (2001). Effects of High-Intensity Fires on Soil Properties and Plant Growth in a Bolivian Dry Forest. Plant Soil 234, 119–129. doi:10.1023/A:1010507414994
  • Ketterings, Q. M., and Bigham, J. M. (2000). Soil Color as an Indicator of Slash-And-Burn Fire Severity and Soil Fertility in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1826–1833. doi:10.2136/sssaj2000.6451826x
  • Lucas-Borja, M. E., Miralles, I., Ortega, R., Plaza-Álvarez, P. A., Gonzalez-Romero, J., Sagra, J., et al. (2019). Immediate Fire-Induced Changes in Soil Microbial Community Composition in an Outdoor Experimental Controlled System. Sci. Total Environ. 696, 134033. doi:10.1016/j.scitotenv.2019.134033
  • Mallol, C., Marlowe, F. W., Wood, B. M., and Porter, C. C. (2007). Earth, Wind, and Fire: Ethnoarchaeological Signals of Hadza Fires. J. Archaeol. Sci. 34, 2035–2052. doi:10.1016/j.jas.2007.02.002
  • Mallol, C., Mentzer, S. M., and Miller, C. E. (2017). “Combustion Features,” in Archaeological Soil and Sediment Micromorphology. Editors C. Nicosia, and G. Stoops (Hoboken, NJ: John Wiley & Sons, Ltd), 299–330. doi:10.1002/9781118941065.ch31
  • Martínez, L. M., Sandoval, J. J., and Guevara, R. D. (1991). El Clima en la Reserva de la Biosfera Sierra de Manantlan (Jalisco-Colima, México) y en su área de Influencia. Agrociencia, Agua-Suelo-Clima 2, 1–14.
  • Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., and Zavala, L. M. (2011). Fire Effects on Soil Aggregation: A Review. Earth-Science Rev. 109, 44–60. doi:10.1016/j.earscirev.2011.08.002
  • Mataix-Solera, J., and Doerr, S. H. (2004). Hydrophobicity and Aggregate Stability in Calcareous Topsoils From Fire-Affected Pine Forests in Southeastern Spain. Geoderma 118, 77–88. doi:10.1016/S0016-7061(03)00185-X
  • Merino, A., Chávez-Vergara, B., Salgado, J., Fonturbel, M. T., García-Oliva, F., and Vega, J. A. (2015). Variability in the Composition of Charred Litter Generated by Wildfire in Different Ecosystems. CATENA 133, 52–63. doi:10.1016/j.catena.2015.04.016
  • Merino, A., Fonturbel, M. T., Fernández, C., Chávez-Vergara, B., García-Oliva, F., and Vega, J. A. (2018). Inferring Changes in Soil Organic Matter in Post-Wildfire Soil Burn Severity Levels in a Temperate Climate. Sci. Total Environ. 627, 622–632. doi:10.1016/j.scitotenv.2018.01.189
  • Merino, A., Jiménez, E., Fernández, C., Fontúrbel, M. T., Campo, J., and Vega, J. A. (2019). Soil Organic Matter and Phosphorus Dynamics After Low Intensity Prescribed Burning in Forests and Shrubland. J. Environ. Manag. 234, 214–225. doi:10.1016/j.jenvman.2018.12.055
  • Murphy, J., and Riley, J. P. (1962). A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/S0003-2670(00)88444-5
  • Nave, L. E., Vance, E. D., Swanston, C. W., and Curtis, P. S. (2011). Fire Effects on Temperate Forest Soil C and N Storage. Ecol. Appl. 21, 1189–1201. doi:10.1890/10-0660.1
  • Neary, D. G., Klopatek, C. C., DeBano, L. F., and Folliott, P. F. (1999). Fire Effects on Belowground Sustainability: A Review and Synthesis. For. Ecol. Manag. 122, 51–71. doi:10.1016/S0378-1127(99)00032-8
  • C. Nicosia, and G. Stoops (Editors) (2017). Archaeological Soil and Sediment Micromorphology (Hoboken, NJ: Wiley).
  • Pereira, J. S., Badía, D., Martí, C., Mora, J. L., and Donzeli, V. P. (2023). Fire Effects on Biochemical Properties of a Semiarid Pine Forest Topsoil at Cm-Scale. Pedobiologia 96, 150860. doi:10.1016/j.pedobi.2022.150860
  • Pérez-Salicrup, D. R. (2018). Caracterización y Clasificación de Combustibles Para Generar y Validar Modelos de Combustibles Forestales Para México (No. 251694). Mexico City: Fondo sectorial CONAFOR-CONACYT.
  • Phillips, D. H., Foss, J. E., Buckner, E. R., Evans, R. M., and FitzPatrick, E. A. (2000). Response of Surface Horizons in an Oak Forest to Prescribed Burning. Soil Sci. Soc. Am. J. 64, 754–760. doi:10.2136/sssaj2000.642754x
  • Ponomarenko, E. V., and Anderson, D. W. (2001). Importance of Charred Organic Matter in Black Chernozem Soils of Saskatchewan. Can. J. Soil. Sci. 81, 285–297. doi:10.4141/S00-075
  • Ponomarenko, E. V. (1997). Seasonality, Paleoenvironments and Stratigraphic Correlations of Archaeological Components in the Borden Dune Complex. Saskatoon, SK: Report on file with Western HeritageServices Inc.
  • Rubio, E. A. (2007). Frecuencia de Incendios Forestales en Bosques de Pinus Douglasiana del Ejido Ahuacapán, Jalisco, México. (Bachelor degree thesis). Jalisco, México: Departamento de Ecología y Recursos Naturales, Universidad de Guadalajara.
  • Ryan, K. C., and Noste, N. V. (1985). “Evaluating Prescribed Fires,” in Tech Coord Workshop of Wilderness Fire. Editors J. E. Lotan, B. M. Kilgore, W. C. Fischer, and R. W. Mutch (Missoula, Montana: U.S. Department of Agriculture (USDA)).
  • Santín, C., and Doerr, S. H. (2016). Fire Effects on Soils: The Human Dimension. Philosophical Trans. R. Soc. B Biol. Sci. 371, 20150171. doi:10.1098/rstb.2015.0171
  • Santín, C., Doerr, S. H., Merino, A., Bryant, R., and Loader, N. J. (2016). Forest Floor Chemical Transformations in a Boreal Forest Fire and Their Correlations With Temperature and Heating Duration. Geoderma 264, 71–80. doi:10.1016/j.geoderma.2015.09.021
  • Scharenbroch, B. C., Nix, B., Jacobs, K. A., and Bowles, M. L. (2012). Two Decades of Low-Severity Prescribed Fire Increases Soil Nutrient Availability in a Midwestern, USA Oak (Quercus) Forest. Geoderma 183–184, 80–91. doi:10.1016/j.geoderma.2012.03.010
  • Schwertmann, U., and Fischer, W. R. (1973). Natural “Amorphous” Ferric Hydroxide. Geoderma 10, 237–247. doi:10.1016/0016-7061(73)90066-9
  • Soto, B., and Diaz-Fierros, F. (1993). Interactions Between Plant Ash Leachates and Soil. Int. J. Wildland Fire 3, 207–216. doi:10.1071/WF9930207
  • Stoops, G., Marcelino, V., and Mees, F. (2018). Interpretation of Micromorphological Features of Soils and Regoliths. 2nd ed. Amsterdam: Elsevier.
  • Terefe, T., Mariscal-Sancho, I., Peregrina, F., and Espejo, R. (2008). Influence of Heating on Various Properties of Six Mediterranean Soils. A Laboratory Study. Geoderma 143, 273–280. doi:10.1016/j.geoderma.2007.11.018
  • Thomaz, E. L. (2021). Effects of Fire on the Aggregate Stability of Clayey Soils: A Meta-Analysis. Earth-Science Rev. 221, 103802. doi:10.1016/j.earscirev.2021.103802
  • Úbeda, X., Lorca, M., Outeiro, L. R., Bernia, S., and Castellnou, M. (2005). Effects of Prescribed Fire on Soil Quality in Mediterranean Grassland (Prades Mountains, North-East Spain). Int. J. Wildland Fire 14, 379–384. doi:10.1071/WF05040
  • Ulery, A. L., Graham, R. C., and Amrhein, C. (1993). Wood-Ash Composition and Soil pH Following Intense Burning. Soil Sci. 156, 358–364. doi:10.1097/00010694-199311000-00008
  • Ulery, A. L., and Graham, R. C. (1993). Forest Fire Effects on Soil Color and Texture. Soil Sci. Soc. Am. J. 57, 135–140. doi:10.2136/sssaj1993.03615995005700010026x
  • Vega, J. A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., and Jiménez, E. (2013). Testing the Ability of Visual Indicators of Soil Burn Severity to Reflect Changes in Soil Chemical and Microbial Properties in Pine Forests and Shrubland. Plant Soil 369, 73–91. doi:10.1007/s11104-012-1532-9
  • Wells, C. G., Campbell, R. E., DeBano, L. F., Lewis, C. E., Fredriksen, R. L., Franklin, E. C., et al. (1979). Effects of Fire on Soil: A State of Knowledge Review (General Technical Report No. WO-07). Washington, DC: U.S. Deparment of Agriculture Forest Service.
  • Wienhold, B. J., and Klemmedson, J. O. (1992). Effect of Prescribed Fire on Nitrogen and Phosphorus in Arizona Chaparral Soil-Plant Systems. Arid Soil Res. Rehabilitation 6, 285–296. doi:10.1080/15324989209381323
  • Zuloaga-Aguilar, S. (2021). Datos Climáticos de la Estación Científica Las Joyas: 2011-2020 Informe Técnico Número 7. Report Number: 7. doi:10.13140/RG.2.2.19001.08809