Forms of Toxic and Trace Metals in Grassland Soils of Galicia, Spain

  1. Cristina López-Mateo 1
  2. Raúl Marcos-Rodríguez 1
  3. Florentino Díaz-Rodríguez 1
  4. María Luisa Fernández-Marcos 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Ano de publicación: 2023

Volume: 13

Número: 1

Tipo: Artigo

DOI: 10.3389/SJSS.2023.11201 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Spanish Journal of Soil Science: SJSS

Resumo

The application of cattle slurry to agricultural soils contributes to the circular economy, while enriching the soil in macro and micronutrients and organic matter. However, this practice can have deleterious environmental effects, by adding toxic metals and other contaminants. The pseudo-total concentrations of nine potentially toxic and trace metals (Fe, Mn, Zn, Cu, Ni, Co, Cr, Cd and Pb) as well as metals extracted by DTPA, Mehlich 3 and 0.01 M CaCl2 were determined in Galician (NW Spain) grassland soils regularly receiving cattle slurry. Four soil depths (0–5, 5–10, 10–20 and 20–40 cm) were sampled and analysed. The pollution condition was assessed by comparing the pseudo-total concentrations with generic reference levels for Galician soils and by using pollution indices. The results indicated the absence of soil pollution by Fe, Ni, Co, Cr and Pb and a situation of no pollution to moderate pollution by Mn, Zn and Cu. Cd was the element most frequently enriched in the studied soils according to the pseudo-total, DTPA and Mehlich-3 concentrations, while the extraction by CaCl2 pointed to no environmental risk. The study supports the lithogenic character of Fe, Ni, Co and Cr, the mixed lithogenic and anthropogenic nature of Mn, Zn and Cu and the anthropogenic origin of Cd in these soils. The latter element can be added by both the application of cattle slurry and inorganic phosphate fertilisers.

Información de financiamento

Referencias bibliográficas

  • Acevedo-Figueroa, D., Jimenez, B. D., and Rodriguez-Sierra, C. J. (2006). Trace Metals in Sediments of Two Estuarine Lagoons from Puerto Rico. Environ. Pollut. 141, 336–342. doi:10.1016/j.envpol.2005.08.037
  • Adamo, P., Agrelli, D., and Zampella, M. (2018). Chemical Speciation to Assess Bioavailability, Bioaccessibility and Geochemical Forms of Potentially Toxic Metals (PTMs) in Polluted Soils. Environ. Geochem. (Second Ed.) 2018, 153. doi:10.1016/B978-0-444-63763-5.00010-0
  • Aldrich, A. P., Kistler, D., and Sigg, L. (2002). Speciation of Cu and Zn in Drainage Water from Agricultural Soils. Environ. Sci. Technol. 36, 4824–4830. doi:10.1021/es025813x
  • Alloway, B. J., and Jackson, A. P. (1991). The Behaviour of Heavy Metals in Sewage Sludge-Amended Soils. Sci. Total Environ. 100, 151–176. doi:10.1016/0048-9697(91)90377-q
  • Alvarez-Ayuso, E. (2008). Cadmium in Soil-Plant Systems: an Overview. Int. J. Environ. Pollut. 33, 275–291. doi:10.1504/ijep.2008.019399
  • Andrews, P., Town, R. M., Hedley, M. J., and Loganathan, P. (1996). Measurement of Plant-Available Cadmium in New Zealand Soils. Aust. J. Soil Res. 34, 441–452. doi:10.1071/sr9960441
  • Antoniadis, V., Robinson, J. S., and Alloway, B. J. (2008). Effects of Short-Term pH Fluctuations on Cadmium, Nickel, Lead, and Zinc Availability to Ryegrass in a Sewage Sludge-Amended Field. Chemosphere 71, 759–764. doi:10.1016/j.chemosphere.2007.10.015
  • Antunes, S. C., Pereira, R., Marques, S. M., Castro, B. B., and Goncalves, F. (2011). Impaired Microbial Activity Caused by Metal Pollution: A Field Study in a Deactivated Uranium Mining Area. Sci. Total Environ. 410, 87–95. doi:10.1016/j.scitotenv.2011.09.003
  • Baize, D. (1997). Detection of Moderate Contamination by Trace Metals in Agricultural Soils. Analusis 25, M29–M35.
  • Bartlett, R. J., and Kimble, J. M. (1976). Behavior of Chromium in Soils: I. Trivalent Forms. J. Environ. Qual. 5, 379–383. doi:10.2134/jeq1976.00472425000500040009x
  • Batley, G. E. (2012). Heavy Metal"-Aa Useful Term. Integr. Environ. Assess. Manag. 8, 215. doi:10.1002/ieam.1290
  • Buat-Menard, P., and Chesselet, R. (1979). Variable Influence of the Atmospheric Flux on the Trace-Metal Chemistry of Oceanic Suspended Matter. Earth Planet. Sci. Lett. 42, 399–411. doi:10.1016/0012-821x(79)90049-9
  • Cakmak, D., Saljnikov, E., Mrvic, V., Jakovljevic, M., Marjanovic, Z., Sikiric, B., et al. (2010). Soil Properties and Trace Elements Contents Following 40 Years of Phosphate Fertilization. J. Environ. Qual. 39, 541–547. doi:10.2134/jeq2009.0216
  • Calvo-Rodríguez, F. (2003). Caracterización dos puríns de vacuno das explotacións da conca do río Magdalena (A Pastoriza). Master Thesis Dissertation (Santiago, Spain: University of Santiago de Compostela).
  • Caridad-Cancela, R., de Abreu, C. A., and Paz-Gonzalez, A. (2002). DTPA and Mehlich-3 Micronutrient Extractability in Natural Soils. Commun. Soil Sci. Plant Analysis 33, 2879–2893. doi:10.1081/css-120014488
  • Daskalakis, K. D., and Oconnor, T. P. (1995). Normalization and Elemental Sediment Contamination in the Coastal United States. Environ. Sci. Technol. 29, 470–477. doi:10.1021/es00002a024
  • de la Torre, A. I., Jimenez, J. A., Carballo, M., Fernandez, C., Roset, J., and Munoz, M. J. (2000). Ecotoxicological Evaluation of Pig Slurry. Chemosphere 41, 1629–1635. doi:10.1016/s0045-6535(00)00038-2
  • de Temmerman, L., Vanongeval, L., Boon, W., Hoenig, M., and Geypens, M. (2003). Heavymetal Content of Arable Soils in Northern Belgium. Water Air Soil Pollut. 148, 61–76. doi:10.1023/a:1025498629671
  • Del Castilho, P., Chardon, W. J., and Salomons, W. (1993). Influence of Cattle-Manure Slurry Application on the Solubility of Cadmium, Copper, and Zinc in a Manured Acidic, Loamy-Sand Soil. J. Environ. Qual. 22, 689–697. doi:10.2134/jeq1993.00472425002200040009x
  • Duffus, J. H. (2002). "Heavy Metals" - A Meaningless Term? (IUPAC Technical Report). Pure Appl. Chem. 74, 793–807. doi:10.1351/pac200274050793
  • Fendorf, S. E. (1995). Surface-reactions of Chromium in Soils and Waters. Geoderma 67, 55–71. doi:10.1016/0016-7061(94)00062-f
  • Fernandez-Calvino, D., Soler-Rovira, P., Polo, A., Diaz-Ravina, M., Arias-Estevez, M., and Plaza, C. (2010). Enzyme Activities in Vineyard Soils Long-Term Treated with Copper-Based Fungicides. Soil Biol. Biochem. 42, 2119–2127. doi:10.1016/j.soilbio.2010.08.007
  • Franco-Uria, A., Lopez-Mateo, C., Roca, E., and Fernandez-Marcos, M. L. (2009). Source Identification of Heavy Metals in Pastureland by Multivariate Analysis in NW Spain. J. Hazard. Mater. 165, 1008–1015. doi:10.1016/j.jhazmat.2008.10.118
  • Gray, C. W., Mclaren, R. G., Roberts, A. H. C., and Condron, L. M. (1999). Effect of Soil pH on Cadmium Phytoavailability in Some New Zealand Soils. N. Z. J. Crop Hortic. Sci. 27, 169–179. doi:10.1080/01140671.1999.9514093
  • Guo, T., Lou, C. L., Zhai, W. W., Tang, X. J., Hashmi, M. Z., Murtaza, R., et al. (2018). Increased Occurrence of Heavy Metals, Antibiotics and Resistance Genes in Surface Soil after Long-Term Application of Manure. Sci. Total Environ. 635, 995–1003. doi:10.1016/j.scitotenv.2018.04.194
  • Gupta, S. K., Vollmer, M. K., and Krebs, R. (1996). The Importance of Mobile, Mobilisable and Pseudo Total Heavy Metal Fractions in Soil for Three-Level Risk Assessment and Risk Management. Sci. Total Environ. 178, 11–20. doi:10.1016/0048-9697(95)04792-1
  • Gustin, M. S., Hou, D., and Tack, F. M. G. (2021). The Term "heavy Metal(s)": History, Current Debate, and Future Use. Sci. Total Environ. 789, 147951. doi:10.1016/j.scitotenv.2021.147951
  • Hodson, M. E. (2004). Heavy Metals - Geochemical Bogey Men? Environ. Pollut. 129, 341–343. doi:10.1016/j.envpol.2003.11.003
  • Houba, V. J. G., Novozamsky, I., Lexmond, T. M., and Vanderlee, J. J. (1990). Applicability of 0.01 M CaCl2 as a Single Extraction Solution for the Assessment of the Nutrient Status of Soils and Other Diagnostic Purposes. Commun. Soil Sci. Plant Analysis 21, 2281–2290. doi:10.1080/00103629009368380
  • IUPAC (2022). Trace element [Online]. Available at: https://goldbook.iupac.org/terms/view/T06421 (Accessed Sepember, 2022).
  • IUSS Working Group WRB (2022). World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th ed. Vienna, Austria: International Union of Soil Sciences (IUSS).
  • Jakubus, M., Dach, J., and Starmans, D. (2013). Bioavailability of Copper and Zinc in Pig and Cattle Slurries. Fresenius Environ. Bull. 22, 995–1002.
  • Kabata-Pendias, A., and Szteke, B. (2015). Trace Elements in Abiotic and Biotic Environments. Abingdon-on-Thames, Oxfordshire, UK: Taylor & Francis.
  • Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. Boca Raton, FL, USA: CRC.
  • L'Herroux, L., Leroux, S., Appriou, P., and Martinez, J. (1997). Behaviour of Metals Following Intensive Pig Slurry Applications to a Natural Field Treatment Process in Brittany (France). Environ. Pollut. 97, 119–130. doi:10.1016/s0269-7491(97)00072-9
  • Lebourg, A., Sterckeman, T., Ciesielski, H., and Proix, N. (1996). Intérêt de différents réactifs d'extraction chimique pour l'évaluation de la biodisponibilité des métaux en traces du sol. Agronomie 16, 201–215. doi:10.1051/agro:19960401
  • Li, Y., Xu, Z. Q., Ren, H. H., Wang, D., Wang, J., Wu, Z., et al. (2022). Spatial Distribution and Source Apportionment of Heavy Metals in the Topsoil of Weifang City, East China. Front. Environ. Sci. 10. doi:10.3389/fenvs.2022.893938
  • Liang, C. N., and Tabatabai, M. A. (1977). Effects of Trace Elements on Nitrogen Mineralisation in Soils. Environ. Pollut. 12, 141–147. doi:10.1016/0013-9327(77)90017-9
  • Lindsay, W. L., and Norvell, W. A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 42, 421–428. doi:10.2136/sssaj1978.03615995004200030009x
  • Loganathan, P., and Hedley, M. J. (1997). Downward Movement of Cadmium and Phosphorus from Phosphatic Fertilisers in a Pasture Soil in New Zealand. Environ. Pollut. 95, 319–324. doi:10.1016/s0269-7491(96)00142-x
  • Loganathan, P., Hedley, M. J., and Grace, N. D. (2008). Pasture Soils Contaminated with Fertilizer-Derived Cadmium and Fluorine: Livestock Effects. Rev. Environ. Contam. Toxicol. 192, 29. doi:10.1007/978-0-387-71724-1_2
  • Lopez-Mosquera, M. E., Barros, R., Sainz, M. J., Carral, E., and Seoane, S. (2005). Metal Concentrations in Agricultural and Forestry Soils in Northwest Spain: Implications for Disposal of Organic Wastes on Acid Soils. Soil Use Manag. 21, 298–305. doi:10.1079/sum2005324
  • Macías-Vázquez, F., and Calvo de Anta, R. (2009). Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Santiago de Compostela, Xunta de Galicia: Consellería de Medio Ambiente e Desenvolvemento Sostible.,
  • Madrid, L. (2010). Heavy Metals": Reminding a Long-Standing and Sometimes Forgotten Controversy. Geoderma 155, 128–129. doi:10.1016/j.geoderma.2009.11.031
  • Mantovi, P., Bonazzi, G., Maestri, E., and Marmiroli, N. (2003). Accumulation of Copper and Zinc from Liquid Manure in Agricultural Soils and Crop Plants. Plant Soil 250, 249–257. doi:10.1023/a:1022848131043
  • Mcbride, M. B. (1989). “Reactions Controlling Heavy Metal Solubility in Soils,” in Advances in Soil Science. Editor B. A. Stewart (New York, NY: Springer New York), Vol. 10.
  • Mclaughlin, M. J., Tiller, K. G., Naidu, R., and Stevens, D. P. (1996). Review: The Behaviour and Environmental Impact of Contaminants in Fertilizers. Aust. J. Soil Res. 34, 1–54. doi:10.1071/sr9960001
  • Mclaughlin, M. J., Zarcinas, B. A., Stevens, D. P., and Cook, N. (2000). Soil Testing for Heavy Metals. Commun. Soil Sci. Plant Analysis 31, 1661–1700. doi:10.1080/00103620009370531
  • Mehlich, A. (1984). Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Analysis 15, 1409–1416. doi:10.1080/00103628409367568
  • Meteogalicia, C. D. M. A. (2022). Xunta de Galicia, Spain. Available at: http://www.meteogalicia.gal (Accessed September, 2022).
  • Ministerio de la Presidencia, R. C. L. C. Y. M. D. (2022). Real Decreto 1051/2022, de 27 de diciembre, por el que se establecen normas para la nutrición sostenible en los suelos agrarios. Madrid, Spain: Boletín Oficial Del Estado.
  • Monterroso, C., Alvarez, E., and Marcos, M. L. F. (1999). Evaluation of Mehlich 3 Reagent as a Multielement Extractant in Mine Soils. Land Degrad. Dev. 10, 35–47. doi:10.1002/(sici)1099-145x(199901/02)10:1<35::aid-ldr319>3.0.co;2-6
  • Moreno-Caselles, J., Moral, R., Perez-Murcia, M., Perez-Espinosa, A., and Rufete, B. (2002). Nutrient Value of Animal Manures in Front of Environmental Hazards. Commun. Soil Sci. Plant Analysis 33, 3023–3032. doi:10.1081/css-120014499
  • Müller, G. (1979). Heavy Metals in the Sediments of the Rhine - Changes since 1971. Umschau Wissenschaft Und Tech. 79, 778–783.
  • Nagajyoti, P. C., Lee, K. D., and Sreekanth, T. V. M. (2010). Heavy Metals, Occurrence and Toxicity for Plants: a Review. Environ. Chem. Lett. 8, 199–216. doi:10.1007/s10311-010-0297-8
  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., and Chambers, B. J. (2003). An Inventory of Heavy Metals Inputs to Agricultural Soils in England and Wales. Sci. Total Environ. 311, 205–219. doi:10.1016/s0048-9697(03)00139-6
  • Nieboer, E., and Richardson, D. H. S. (1980). The Replacement of the Non-descript Term Heavy-Metals by a Biologically and Chemically Significant Classification of Metal-Ions. Environ. Pollut. Ser. B-Chemical Phys. 1, 3–26. doi:10.1016/0143-148x(80)90017-8
  • Nunez-Delgado, A., Lopez-Periago, E., and Diaz-Fierros-Viqueria, F. (2002). Pollution Attenuation by Soils Receiving Cattle Slurry after Passage of a Slurry-like Feed Solution. Column Experiments. Bioresour. Technol. 84, 229–236. doi:10.1016/s0960-8524(02)00050-0
  • Nziguheba, G., and Smolders, E. (2008). Inputs of Trace Elements in Agricultural Soils via Phosphate Fertilizers in European Countries. Sci. Total Environ. 390, 53–57. doi:10.1016/j.scitotenv.2007.09.031
  • Paz-González, A., Taboada-Castro, T., and Taboada-Castro, M. (2000). Levels of Heavy Metals (Co, Cu, Cr, Ni, Pb, and Zn) in Agricultural Soils of Northwest Spain. Commun. Soil Sci. Plant Analysis 31, 1773–1783. doi:10.1080/00103620009370536
  • Pereira, B. F. F., Rozane, D. E., Araujo, S. R., Barth, G., Queiroz, R. J. B., Nogueira, T. A. R., et al. (2011). Cadmium Availability and Accumulation by Lettuce and Rice. Rev. Bras. De. Cienc. Do Solo 35, 645–654. doi:10.1590/s0100-06832011000200033
  • Podlešáková, E., Němeček, J., and Vácha, R. (2002). Critical Values of Trace Elements in Soils from the Viewpoint of the Transfer Pathway Soil - Plant. Plant, Soil Environ. 48, 193–202. doi:10.17221/4224-pse
  • Poulsen, P. H. B., Magid, J., Luxhoi, J., and de Neergaard, A. (2013). Effects of Fertilization with Urban and Agricultural Organic Wastes in a Field Trial - Waste Imprint on Soil Microbial Activity. Soil Biol. Biochem. 57, 794–802. doi:10.1016/j.soilbio.2012.02.031
  • Pourret, O., and Hursthouse, A. (2019). It's Time to Replace the Term "Heavy Metals" with "Potentially Toxic Elements" when Reporting Environmental Research. Int. J. Environ. Res. Public Health 16, 4446. doi:10.3390/ijerph16224446
  • Proshad, R., Islam, M. S., Kormoker, T., Sayeed, A., Khadka, S., and Idris, A. M. (2021). Potential Toxic Metals (PTMs) Contamination in Agricultural Soils and Foodstuffs with Associated Source Identification and Model Uncertainty. Sci. Total Environ. 789, 147962. doi:10.1016/j.scitotenv.2021.147962
  • Richter, R., Rimovsky, K., and Hlusek, J. (1997). The Productivity of a Crop Rotation under Conventional and Organic Method of Management in Conditions of Increased Content of Heavy Metals in the Soil. Acta Univ. Agric. Silvic. Mendelianae Brunensis 45, 83–90.
  • Rodriguez-Seijo, A., Andrade, M. L., and Vega, F. A. (2017). Origin and Spatial Distribution of Metals in Urban Soils. J. Soils Sediments 17, 1514–1526. doi:10.1007/s11368-015-1304-2
  • Romkens, P., and Salomons, W. (1998). Cd, Cu and Zn Solubility in Arable and Forest Soils: Consequences of Land Use Changes for Metal Mobility and Risk Assessment. Soil Sci. 163, 859–871. doi:10.1097/00010694-199811000-00003
  • Seco-Reigosa, N., Fernandez-Sanjurjo, M. J., Nunez-Delgado, A., Cutillas-Barreiro, L., Gomez-Armesto, A., Novoa-Munoz, J. C., et al. (2015). Heavy Metals in Pastureland Soils Situated in A Pastoriza (NW Spain) Treated with Cattle Slurry and NPK Fertilizers. Span. J. Soil Sci. 5, 154–164. doi:10.3232/sjss.2015.v5.n2.05
  • Silva, E. B., Alves, I. S., Alleoni, L. R. F., Grazziotti, P. H., Farnezi, M. M. M., Santos, L. L., et al. (2020). Availability and Toxic Level of Cadmium, Lead and Nickel in Contaminated Soils. Commun. Soil Sci. Plant Analysis 51, 1341–1356. doi:10.1080/00103624.2020.1763396
  • Sims, J. T., and Johnson, G. V. (1991). Micronutrient Soil Tests. Micronutr. Agric. 4. doi:10.2136/sssabookser4.2ed.c12
  • Smith, S. R. (1997). Rhizobium in Soils Contaminated with Copper and Zinc Following the Long-Term Application of Sewage Sludge and Other Organic Wastes. Soil Biol. Biochem. 29, 1475–1489. doi:10.1016/s0038-0717(97)00036-9
  • Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., and Schvartz, C. (2006). Trace Elements in Soils Developed in Sedimentary Materials from Northern France. Geoderma 136, 912–929. doi:10.1016/j.geoderma.2006.06.010
  • Sterckeman, T., Douay, F., Proix, N., and Fourrier, H. (2000). Vertical Distribution of Cd, Pb and Zn in Soils Near Smelters in the North of France. Environ. Pollut. 107, 377–389. doi:10.1016/s0269-7491(99)00165-7
  • Trierweiler, J. F., and Lindsay, W. L. (1969). EDTA-ammonium Carbonate Soil Test for Zinc. Soil Sci. Soc. Am. Proc. 33, 49–54. doi:10.2136/sssaj1969.03615995003300010017x
  • USEPA (2007). Method 3051A. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils [Online]. Washington, DC, USA: USEPA. Available at: https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and-oils (Accessed September, 2022).
  • Whitten, M. G., and Ritchie, G. S. P. (1991). Calcium-chloride Extractable Cadmium as an Estimate of Cadmium Uptake by Subterranean Clover. Aust. J. Soil Res. 29, 215–221. doi:10.1071/sr9910215
  • Wilcke, W., Bol, R., and Amelung, W. (2002). Fate of Dung-Applied Copper in a British Grassland Soil. Geoderma 106, 273–288. doi:10.1016/s0016-7061(01)00128-8
  • Williams, C. H., and David, D. J. (1976). Accumulation in Soil of Cadmium Residues from Phosphate Fertilizers and Their Effect on Cadmium Content of Plants. Soil Sci. 121, 86–93. doi:10.1097/00010694-197602000-00004
  • Xia, L., Lam, S. K., Yan, X., and Chen, D. (2017). How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 51, 7450–7457. doi:10.1021/acs.est.6b06470
  • Zhang, X., Barcelo, D., Clougherty, R. J., Gao, B., Harms, H., Tefsen, B., et al. (2022). Potentially Toxic Element"-Something that Means Everything Means Nothing. Environ. Sci. Technol. 56, 11922–11925. doi:10.1021/acs.est.2c03056