Equality of the Wobbly and Shaky Loci

  1. Peón-Nieto, Ana 12
  1. 1 Department of Mathematics, Universidade de Santiago de Compostela , Rúa de Lope Gómez de Marzoa, s/n, 15705 Santiago de Compostela, A Coruña, Spain
  2. 2 School of Mathematics, University of Birmingham, Watson Building , Edgebaston, Birmingham B15 2TT, UK
Journal:
International Mathematics Research Notices

ISSN: 1073-7928 1687-0247

Year of publication: 2023

Volume: 2024

Issue: 8

Pages: 6710-6730

Type: Article

DOI: 10.1093/IMRN/RNAD254 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: International Mathematics Research Notices

Abstract

Let X be a smooth complex projective curve of genus g ≥ 2, and let D ⊂ X be a reduced divisor. We prove that a parabolic vector bundle E on X is (strongly) wobbly, that is, E has a non-zero (strongly) parabolic nilpotent Higgs field, if and only if it is (strongly) shaky, that is, it is in the image of the exceptional divisor of a suitable resolution of the rational map from the (strongly) parabolic Higgs moduli to the vector bundle moduli space, both assumed to be smooth. This solves a conjecture by Donagi–Pantev [14] in the parabolic and the vector bundle context. To this end, we prove the stability of strongly very stable parabolic bundles, and criteria for very stability of parabolic bundles. © The Author(s) 2023.

Bibliographic References

  • Baraglia, Q. J. Math., 69, pp. 681, 10.1093/qmath/hax055
  • Beauville, (1989), J. Reine Angew. Math., 398, pp. 169
  • Bhosle, (1989), Ark. Mat., 27, pp. 15, 10.1007/BF02386356
  • Biswas, (1997), Duke Math. J., 88, pp. 305, 10.1215/S0012-7094-97-08812-8
  • Boalch, (2007), Duke Math. J., 139, pp. 369, 10.1215/S0012-7094-07-13924-3
  • Boden, (1999), J. Lond. Math. Soc., 59, pp. 461, 10.1112/S0024610799007061
  • Borne, (2007), Internat. Math. Res. Notices, 2007, 10.1093/imrn/rnm049
  • Bottacin, (1995), Ann Sci École Norm Sup., 28, pp. 391, 10.24033/asens.1719
  • Bozec, (2022), Internat. Math. Res. Notices, 2022, pp. 19054, 10.1093/imrn/rnab035
  • Cadman, (2007), Amer. J. Math., 129, pp. 405, 10.1353/ajm.2007.0007
  • Chuang, pp. 1323
  • Cox, (2015), Toric Varieties
  • Dhillon
  • Donagi, (2008), Surveys in Differential Geometry, pp. 85
  • Donagi, (2022), 10.24033/ast.1178
  • Donagi, (2012), Invent. Math., 189, pp. 653, 10.1007/s00222-012-0373-8
  • Donagi
  • Edidin, (2013), Riemann–Roch for Deligne–Mumford Stacks
  • Franco, Advances in Mathematics, pp. 107493
  • Drinfeld, (2021), Letter to P. Deligne
  • Groechenig, (2014), Internat. Math. Res. Notices, 23, pp. 6523, 10.1093/imrn/rnt167
  • Hartshorne, (1977), Algebraic Geometry, 10.1007/978-1-4757-3849-0
  • Heinloth, (2016), Math. Ann., 365, pp. 1499, 10.1007/s00208-015-1301-1
  • Hironaka, (1964), Ann. Math. (2), 79, pp. 109, 10.2307/1970486
  • Laumon, (1988), Duke Math. J., 57, pp. 647, 10.1215/S0012-7094-88-05729-8
  • Laumon, (1995)
  • Logares, (2010), J. Reine Angew. Math. (Crelles J.), 2010, pp. 89
  • Markman, (1994), Compos. Math., 93, pp. 255
  • Maruyama, (1992), Math. Ann., 293, pp. 77, 10.1007/BF01444704
  • Mehta, (1980), Math. Ann., 248, pp. 205, 10.1007/BF01420526
  • Nitsure, (1991), Proc. London Math. Soc. (3), 62, pp. 275, 10.1112/plms/s3-62.2.275
  • Pauly, (2019), Geom. Dedicata, 198, pp. 143, 10.1007/s10711-018-0333-6
  • Russo, (1997), J. Alg. Geom., 8
  • Simpson, (1990), J. Amer. Math. Soc., 3, pp. 713, 10.1090/S0894-0347-1990-1040197-8
  • Simpson, (1992), Publ. Math. I.H.É.S., 75, pp. 5, 10.1007/BF02699491
  • The Stacks Project
  • Su, Math. Z., 301, pp. 343, 10.1007/s00209-021-02896-3
  • Thaddeus, (2002), J. Reine Angew. Math., 2002, pp. 1, 10.1515/crll.2002.051
  • Toën
  • Yokogawa, (1993), J. Math. Kyoto Univ., 33, pp. 451
  • Yokogawa, (1995), Internat. J. Math., 06, pp. 125, 10.1142/S0129167X95000092
  • Zelaci, (2020), Geom. Dedicata, 204, pp. 165, 10.1007/s10711-019-00447-z