A transversal and practical education as a business success factorliterature review of learning process of basic design through ICT tools

  1. Turienzo, Javier 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Journal of Management and Business Education

ISSN: 2605-1044

Ano de publicación: 2024

Volume: 7

Número: 1

Páxinas: 70-89

Tipo: Artigo

DOI: 10.35564/JMBE.2024.0005 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Journal of Management and Business Education

Resumo

The ongoing societal transformation propelled by innovation and digitalization is amplifying the demand for technological adeptness among current and upcoming professionals. Consequently, there's a pressing need to revamp the educational system and its methodologies to elevate the requisite skill set. Spatial reasoning, innovative thinking, and creativity stand as pivotal proficiencies essential for enabling future professionals to swiftly craft adaptable prototypes catering to client needs. However, conventional teaching approaches exhibit shortcomings in nurturing spatial reasoning, necessitating deeper exploration within the realm of education. This study delves into novel 3D design tools aimed at facilitating three-dimensional modelling within educational settings. The findings underscore the imperative use of digital tools in crafting 3D objects, fostering the development of spatial visualization skills. Moreover, they emphasize the significance of intertwining ICT knowledge, programming skills, and pertinent soft skills. Such an amalgamation equips future professionals with enhanced work capabilities, a comprehensive grasp of market needs, and refined product commercialization strategies.

Referencias bibliográficas

  • Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3, 205-224.
  • https://doi.org/10.1023/A:1009903206236 DOI: https://doi.org/10.1023/A:1009903206236
  • Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students' laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334-342.
  • https://doi.org/10.1016/j.chb.2015.12.054 DOI: https://doi.org/10.1016/j.chb.2015.12.054
  • Aktumen, M., & Bulut, M. (2013). Teacher candidates' opinions on real life problems designed in GeoGebra software. The Anthropologist, 16(1-2), 167-176.
  • https://doi.org/10.1080/09720073.2013.11891345 DOI: https://doi.org/10.1080/09720073.2013.11891345
  • Altmeyer, K., Kapp, S., Thees, M., Malone, S., Kuhn, J., & Brünken, R. (2020). The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses-Theoretical background and empirical results. British Journal of Educational Technology, 51(3), 611-628
  • https://doi.org/10.1111/bjet.12900 DOI: https://doi.org/10.1111/bjet.12900
  • Avila, L. & Bailey, M., (2016). A Computer Graphics Back-to-School Special. IEEE Computer Graphics and Applications, 36(5), 95-96
  • https://doi.org/10.1109/MCG.2016.104 DOI: https://doi.org/10.1109/MCG.2016.104
  • Barmby, P., Kind, P. M., & Jones, K. (2008). Examining changing attitudes in secondary school science. International Journal of Science Education, 30, 1075-1093.
  • https://doi.org/10.1080/09500690701344966 DOI: https://doi.org/10.1080/09500690701344966
  • Bower, M., Howe, C., McCredie, N., Robinson, A. & Grover, D. (2014). Augmented Reality in education - cases, places and potentials. Educational Media International, 51(1), 1-15.
  • https://doi.org/10.1080/09523987.2014.889400 DOI: https://doi.org/10.1080/09523987.2014.889400
  • Bozkurt, G., & Uygan, C. (2020). Lesson hiccups during the development of teaching schemes: a novice technology-using mathematics teacher's professional instrumental genesis of dynamic geometry. ZDM Mathematics Education, 52, 1349-136
  • https://doi.org/10.1007/s11858-020-01184-4 DOI: https://doi.org/10.1007/s11858-020-01184-4
  • Bruce, C. D. & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it? ZDM, 47(3), 331-343
  • https://doi.org/10.1007/s11858-014-0637-4 DOI: https://doi.org/10.1007/s11858-014-0637-4
  • Bridson, M. R., Howie, J., Miller, C. F., III., & Short, H. (2013). On the finite presentation of subdirect products and the nature of residually free groups. American Journal of Mathematics, 135(4), 891-933.
  • https://doi.org/10.1353/ajm.2013.0036 DOI: https://doi.org/10.1353/ajm.2013.0036
  • Buehler, E., Comrie, N., Hofmann, M., McDonald, S. & Hurst, A. (2016). Investigating the implications of 3D printing in special education. ACM Transactions on Accessible Computing. 8, 1-28.
  • https://doi.org/10.1145/2870640 DOI: https://doi.org/10.1145/2870640
  • Chapman, O., & An, S. (2017). A survey of university-based programs that support in-service and pre-service mathematics teachers' change. ZDM, 49, 171-185.
  • https://doi.org/10.1007/s11858-017-0852-x DOI: https://doi.org/10.1007/s11858-017-0852-x
  • Clark-Wilson, A., Robutti, O. & Thomas, M. (2020). Teaching with digital technology. ZDM Mathematics Education, 52, 1223-1242
  • https://doi.org/10.1007/s11858-020-01196-0 DOI: https://doi.org/10.1007/s11858-020-01196-0
  • Cline, L. (2014). 3D printing with autodesk 123D, TinkerCAD, and MakerBot. McGraw-Hill.
  • de Oca, I. M. M., Snoeck, M., Reijers, H. A., & Rodríguez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information And Software Technology, 58, 187-205.
  • https://doi.org/10.1016/j.infsof.2014.07.011 DOI: https://doi.org/10.1016/j.infsof.2014.07.011
  • Dere, H. E., & Kalelioglu, F. (2020). The effects of using web-based 3D design environment on spatial visualisation and mental rotation abilities of secondary school students. Informatics in Education, 19(3), 399-424.
  • https://doi.org/10.15388/infedu.2020.18 DOI: https://doi.org/10.15388/infedu.2020.18
  • Elliott, J.H., Turner, T., Clavisi, O., Thomas, J., Higgins, J.P., Mavergames, C. et al. (2014). Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Medicine, 11(2), e1001603.
  • https://doi.org/10.1371/journal.pmed.1001603 DOI: https://doi.org/10.1371/journal.pmed.1001603
  • Engelbrecht, J., Borba, M. C., & Kaiser, G. (2023). Will we ever teach mathematics again in the way we used to before the pandemic?. ZDM-Mathematics Education, 55(1), 1-16
  • https://doi.org/10.1007/s11858-022-01460-5 DOI: https://doi.org/10.1007/s11858-022-01460-5
  • Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012). Teacher beliefs and technology integration practices: A critical relationship. Computers & Education, 59, 423-435.
  • https://doi.org/10.1016/j.compedu.2012.02.001 DOI: https://doi.org/10.1016/j.compedu.2012.02.001
  • Ford, S. & Minshall, T. (2019). Invited review article: where and how 3d printing is used in teaching and education. Additive Manufacturing, 25, 131-150.
  • https://doi.org/10.1016/j.addma.2018.10.028 DOI: https://doi.org/10.1016/j.addma.2018.10.028
  • Ganesh, G., Sun, Q., & Barat, S. (2010). Improving the marketing math skills of marketing undergraduate students through a unique undergraduate marketing math course. Marketing Education Review, 20(1), 47-64.
  • https://doi.org/10.2753/MER1052-8008200108 DOI: https://doi.org/10.2753/MER1052-8008200108
  • Goi, C. L. (2009). A review of marketing mix: 4Ps or more. International Journal of Marketing Studies, 1(1), 2-15.
  • https://doi.org/10.5539/ijms.v1n1p2 DOI: https://doi.org/10.5539/ijms.v1n1p2
  • Gurbuz, H.G. & Tekinerdogan, B. (2018). Model-based testing for software safety: a systematic mapping study. Software Quality Journal, 26, 1327-1372.
  • https://doi.org/10.1007/s11219-017-9386-2 DOI: https://doi.org/10.1007/s11219-017-9386-2
  • Hajirasouli, A., & Banihashemi, S. (2022). Augmented reality in architecture and construction education: state of the field and opportunities. International Journal of Educational Technology in Higher Education, 19(1), 39
  • https://doi.org/10.1186/s41239-022-00343-9 DOI: https://doi.org/10.1186/s41239-022-00343-9
  • Hegarty, M. & Waller D. A. (2005.) Individual differences in spatial abilities. Cambridge University Press.
  • https://doi.org/10.1017/CBO9780511610448.005 DOI: https://doi.org/10.1017/CBO9780511610448.005
  • Jackson, S. (2017). Mathematics and 3D Printing (Doctoral dissertation, Texas AeM University-Central Texas).
  • Jiawei, W., & Mokmin, N. A. M. (2023). Virtual reality technology in art education with visual communication design in higher education: a systematic literature review. Education and Information Technologies, 1-19.
  • https://doi.org/10.1007/s10639-023-11845-y DOI: https://doi.org/10.1007/s10639-023-11845-y
  • Ju, H., Park, H., Jung, E.Y., & Paik, S.-H. (2022). Proposal for a STEAM education program for creativity exploring the roofline of a hanok using GeoGebra and 4Dframe. Thinking Skills and Creativity, 45, 101062
  • https://doi.org/10.1016/j.tsc.2022.101062 DOI: https://doi.org/10.1016/j.tsc.2022.101062
  • Kearney, M., Burden, K. & Rai, T. (2015). Investigating teachers' adoption of signature mobile pedagogies, Computers & Education, 80, 48-57
  • https://doi.org/10.1016/j.compedu.2014.08.009 DOI: https://doi.org/10.1016/j.compedu.2014.08.009
  • Kelly, J. F. (2014). 3D Modeling and Printing with TinkerCAD: Create and Print Your Own 3D Models. Que Publishing.
  • Kitchenham, B. & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering, Keele University
  • Kostakis, V., Niaros, V., & Giotitsas, C. (2015). Open source 3D printing as a means of learning: An educational experiment in two high schools in Greece. Telematics and Informatics, 32, 118- 128.
  • https://doi.org/10.1016/j.tele.2014.05.001 DOI: https://doi.org/10.1016/j.tele.2014.05.001
  • Liao, K.H. (2017). The abilities of understanding spatial relations, spatial orientation, and spatial visualization affect 3D product design performance: using carton box design as an example. International Journal of Technology and Design Education, 27, 131-147
  • https://doi.org/10.1007/s10798-015-9330-3 DOI: https://doi.org/10.1007/s10798-015-9330-3
  • Lu, H. L. (2010). Research on peer coaching in preservice teacher education-A review of literature. Teaching and teacher education, 26(4), 748-753.
  • https://doi.org/10.1016/j.tate.2009.10.015 DOI: https://doi.org/10.1016/j.tate.2009.10.015
  • Luzardo, D. e Peña, A.J. (2006). History of linear algebra to the dawn of the 20th century. Mathematical Disclosures, 14(2), 153-170
  • Marshall, C. (2016). Tool support for systematic reviews in software engineering. Keele University.
  • Martin, F., Sun, T., & Westine C.D. (2020). A systematic review of research on online teaching and learning from 2009 to 2018. Computers & Education, 159, 104009.
  • https://doi.org/10.1016/j.compedu.2020.104009 DOI: https://doi.org/10.1016/j.compedu.2020.104009
  • McNally, B., Norooz, L., Shorter, A. & Golub, E. (2017). Toward understanding children's perspectives on using 3d printing technologies in their everyday lives. In Proceedings of the 2017 Conference on Interaction Design and Children (Stanford, California, USA) (IDC '17). Association for Computing Machinery, New York, NY, USA, 298-303.
  • https://doi.org/10.1145/3078072.3079735 DOI: https://doi.org/10.1145/3078072.3079735
  • Minetola, P., Iuliano, L., Bassoli, E. & Gatto, A. (2015). Impact of additive manufacturing on engineering education - evidence from Italy. Rapid Prototyping Journal, 21, 535-555.
  • https://doi.org/10.1108/RPJ-09-2014-0123 DOI: https://doi.org/10.1108/RPJ-09-2014-0123
  • Mulligan, J. (2015). Looking within and beyond the geometry curriculum: connecting spatial reasoning to mathematics learning. Zdm, 47, 511-517.
  • https://doi.org/10.1007/s11858-015-0696-1 DOI: https://doi.org/10.1007/s11858-015-0696-1
  • Mystakidis, S., Christopoulos, A., & Pellas, N. (2022). A systematic mapping review of augmented reality applications to support STEM learning in higher education. Education and Information Technologies, 27(2), 1883-1927
  • https://doi.org/10.1007/s10639-021-10682-1 DOI: https://doi.org/10.1007/s10639-021-10682-1
  • Naidoo, J., & Govender, R. (2014). Exploring the use of a dynamic online software programme in the teaching and learning of trigonometric graphs. Pythagoras, 35(2), 1-13.
  • https://doi.org/10.4102/pythagoras.v35i2.260 DOI: https://doi.org/10.4102/pythagoras.v35i2.260
  • Nemorin, S., & Selwyn, N. (2017). Making the best of it? Exploring the realities of 3D printing in school. Research Papers in Education, 32(5), 578-595
  • https://doi.org/10.1080/02671522.2016.1225802 DOI: https://doi.org/10.1080/02671522.2016.1225802
  • Ng, O-L. & Chan, T. (2019). Learning as making: Using 3D computer-aided design to enhance the learning of shape and space in STEM-integrated ways. British Journal of Educational Technology, 50(1), 294-308.
  • https://doi.org/10.1111/bjet.12643 DOI: https://doi.org/10.1111/bjet.12643
  • Ng, O.-L., & Sinclair, N. (2018). Drawing in space: Doing mathematics with 3D pens. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, e C. Vale (Eds.), Uses of technology in primary and secondary mathematics education: Tools, topics and trends. Springer.
  • Niyukuri, F., Nzotungicimpaye, J., & Ntahomvukiye, C. (2020). Pre-Service Teachers' Secondary School Experiences in Learning Geometry and Their Confidence to Teach It. EURASIA Journal of Mathematics Science and Technology Education, 16(8), 1-12.
  • https://doi.org/10.29333/ejmste/8334 DOI: https://doi.org/10.29333/ejmste/8334
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049-1079.
  • https://doi.org/10.1080/0950069032000032199 DOI: https://doi.org/10.1080/0950069032000032199
  • O'Reilly, J., & Barry, B. (2023). The effect of the use of computer-aided design (CAD) and a 3D printer on the child's competence in mathematics. Irish Educational Studies, 42(2), 233-256.
  • https://doi.org/10.1080/03323315.2021.1964561 DOI: https://doi.org/10.1080/03323315.2021.1964561
  • Park, K. & Leung, K.S.F. (2006). A Comparative Study of the Mathematics Textbooks of China, England, Japan, Korea, and the United States. In: Leung, F.K.S., Graf, KD., & Lopez-Real, F.J. (eds) Mathematics Education in Different Cultural Traditions-A Comparative Study of East Asia and the West. New ICMI Study Series, vol 9. Springer, Boston, MA.
  • https://doi.org/10.1007/0-387-29723-5_14 DOI: https://doi.org/10.1007/0-387-29723-5_14
  • Pearson, H. A., & Dubé, A. K. (2022). 3D printing as an educational technology: theoretical perspectives, learning outcomes, and recommendations for practice. Education and Information Technologies, 1-28.
  • https://doi.org/10.1007/s10639-021-10733-7 DOI: https://doi.org/10.1007/s10639-021-10733-7
  • Pellas, N., Mystakidis, S., & Kazanidis, I. (2021). Immersive Virtual Reality in K-12 and Higher Education: A systematic review of the last decade scientific literature. Virtual Reality, 25(3), 835-861.
  • https://doi.org/10.1007/s10055-020-00489-9 DOI: https://doi.org/10.1007/s10055-020-00489-9
  • Perrotta, C. (2013). Do school-level factors influence the educational benefits of digital technology? A critical analysis of teachers' perceptions. British Journal of Educational Technology, 44(2), 314-327.
  • https://doi.org/10.1111/j.1467-8535.2012.01304.x DOI: https://doi.org/10.1111/j.1467-8535.2012.01304.x
  • Posch, I. & Fitzpatrick, G. (2012). First steps in the FabLab: experiences engaging children. In Proceedings of the 24th Australian Computer-Human Interaction Conference. 497-500.
  • https://doi.org/10.1145/2414536.2414612 DOI: https://doi.org/10.1145/2414536.2414612
  • Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309-327.
  • https://doi.org/10.1016/j.compedu.2016.02.002 DOI: https://doi.org/10.1016/j.compedu.2016.02.002
  • Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: a systematic review of 12 years of educational research. Studies in science education, 50(1), 85-129.
  • https://doi.org/10.1080/03057267.2014.881626 DOI: https://doi.org/10.1080/03057267.2014.881626
  • Radniecki, T. (2017). Supporting 3D modeling in the academic library. Library Hi Tech, 35(2), 240-250.
  • https://doi.org/10.1108/LHT-11-2016-0121 DOI: https://doi.org/10.1108/LHT-11-2016-0121
  • Ramful, A., Lowrie, T. e Logan, T. (2017). Measurement of spatial ability: Construction and validation of the spatial reasoning instrument for middle school students. Journal of Psychoeducational Assessment, 35(7), 709-727.
  • https://doi.org/10.1177/0734282916659207 DOI: https://doi.org/10.1177/0734282916659207
  • Greenleaf, E., & Raghubir, P. (2007). Geometry in the marketplace. In Visual Marketing. Psychology Press, 125-154
  • Reiser, B. J. (2014). Designing coherent storylines aligned with NGSS for the K-12 classroom. In National Science Education Leadership Association Meeting. Boston, MA.
  • Šafhalter, A., Vukman, K. B. & Glodež, S. (2016) The effect of 3D-modeling training on students' spatial reasoning relative to gender and grade. Journal of Educational Computing Research 54(3), 395-406.
  • https://doi.org/10.1177/0735633115620430 DOI: https://doi.org/10.1177/0735633115620430
  • Skulmowski, A., Nebel, S., Remmele, M., & Rey, G. D. (2021). Is a preference for realism really naive after all? A cognitive model of learning with realistic visualizations. Educational Psychology Review, 1-27
  • https://doi.org/10.1007/s10648-021-09638-1 DOI: https://doi.org/10.1007/s10648-021-09638-1
  • Shojania, K.G., Sampson, M., Ansari M.T., Ji, J., Doucette, S. & Moher, D. (2007). How quickly do systematic reviews go out of date? A survival analysis. Annals of Internal Medicine, 147, 224-233.
  • https://doi.org/10.7326/0003-4819-147-4-200708210-00179 DOI: https://doi.org/10.7326/0003-4819-147-4-200708210-00179
  • Stieff, M., & Uttal, D. (2015). How much can spatial training improve STEM achievement?. Educational Psychology Review, 27, 607-615.
  • https://doi.org/10.1007/s10648-015-9304-8 DOI: https://doi.org/10.1007/s10648-015-9304-8
  • Taylor, H. A. e Hutton. A. (2013). Think3d!: Training spatial thinking fundamental to STEM education. Cognition and Instruction, 31(4), 434-455.
  • https://doi.org/10.1080/07370008.2013.828727 DOI: https://doi.org/10.1080/07370008.2013.828727
  • Tomić, M. K., Aberšek, B., & Pesek, I. (2019). Geogebra as a spatial skills training tool among science, technology engineering and mathematics students. Computer Applications in Engineering Education, 27(6), 1506-1517
  • https://doi.org/10.1002/cae.22165 DOI: https://doi.org/10.1002/cae.22165
  • Trouche, L., Gueudet, G., & Pepin, B. (2020). The documentational approach to didactics. In S. Lerman (Ed.), Encyclopedia of mathematics education (2nd ed., pp. 237-247). Springer.
  • https://doi.org/10.1007/978-3-030-15789-0_100011 DOI: https://doi.org/10.1007/978-3-030-15789-0_100011
  • Trust, T., & Maloy, R. W. (2017). Why 3D print? The 21st-century skills students develop while engaging in 3D printing projects. Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and Applied Research, 34, 253-266.
  • https://doi.org/10.1080/07380569.2017.1384684 DOI: https://doi.org/10.1080/07380569.2017.1384684
  • Turienzo, J. (2022). Management education through experiential methodology: Use of theatre to rise (no gender) future responsible leaders. Revista de Humanidades, 47, 91-112.
  • Tutkun, O. F., & Ozturk, B. (2013). The effect of GeoGebra mathematical software to the academic success and the level of Van Hiele geometrical thinking. International Journal of Academic Research, 5(4), 22-28.
  • https://doi.org/10.7813/2075-4124.2013/5-4/B.3 DOI: https://doi.org/10.7813/2075-4124.2013/5-4/B.3
  • Uttal, D. H., Miller D. I. & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: Links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367-373.
  • https://doi.org/10.1177/0963721413484756 DOI: https://doi.org/10.1177/0963721413484756
  • Uwurukundo, M. S., Maniraho, J. F., & Tusiime, M. (2022). Effect of GeoGebra software on secondary school students' achievement in 3-D geometry. Education and Information Technologies, 27(4), 5749-5765.
  • https://doi.org/10.1007/s10639-021-10852-1 DOI: https://doi.org/10.1007/s10639-021-10852-1
  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2014). Finding the missing piece: Blocks, puzzles, and shapes fuel school readiness. Trends in Neuroscience and Education, 3(1), 7-13
  • https://doi.org/10.1016/j.tine.2014.02.005 DOI: https://doi.org/10.1016/j.tine.2014.02.005
  • Viberg, O., Grönlund, Å., & Andersson, A. (2020). Integrating digital technology in mathematics education: a Swedish case study. Interactive Learning Environments, 1-12.
  • https://doi.org/10.1080/10494820.2020.1770801 DOI: https://doi.org/10.1080/10494820.2020.1770801
  • Williams, A. M., & Capraro, R. M. (2020). Enhancing spatial abilities through exposer to computer-aid design programs. In Mathematics Education across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Cinvestav/AMIUTEM/PME-NA, Mexico (pp. 720-725).
  • https://doi.org/10.51272/pmena.42.2020-105 DOI: https://doi.org/10.51272/pmena.42.2020-105
  • Yohannes, A., & Chen, H. L. (2021). GeoGebra in mathematics education: a systematic review of journal articles published from 2010 to 2020. Interactive Learning Environments, 1-16.
  • https://doi.org/10.1080/10494820.2021.2016861 DOI: https://doi.org/10.1080/10494820.2021.2016861
  • Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education and Information Technologies, 24(3), 2175-2194.
  • https://doi.org/10.1007/s10639-019-09870-x DOI: https://doi.org/10.1007/s10639-019-09870-x
  • Zhou, D., Gomez, R., Wright, N., Rittenbruch, M., & Davis, J. (2022). A design-led conceptual framework for developing school integrated STEM programs: the Australian context. International Journal of Technology and Design Education, 32(1), 383-411
  • https://doi.org/10.1007/s10798-020-09619-5 DOI: https://doi.org/10.1007/s10798-020-09619-5