Global dynamics of a predator-prey system with immigration in both species

  1. Diz-Pita, Érika 1
  1. 1 Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela
Zeitschrift:
Electronic Research Archive

ISSN: 2688-1594

Datum der Publikation: 2024

Ausgabe: 32

Nummer: 2

Seiten: 762-778

Art: Artikel

DOI: 10.3934/ERA.2024036 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Electronic Research Archive

Ziele für nachhaltige Entwicklung

Zusammenfassung

In nature, the vast majority of species live in ecosystems that are not isolated, and the same is true for predator-prey ecological systems. With this work, we extend a predator-prey model by considering the inclusion of an immigration term in both species. From a biological point of view, that allows us to achieve a more realistic model. We consider a system with a Holling type Ⅰ functional response and study its global dynamics, which allows to not only determine the behavior in a region of the plane , but also to control the orbits that either go or come to infinity. First, we study the local dynamics of the system, by analyzing the singular points and their stability, as well as the possible behavior of the limit cycles when they exist. By using the Poincaré compactification, we determine the global dynamics by studying the global phase portraits in the positive quadrant of the Poincaré disk, which is the region where the system is of interest from a biological point of view.

Bibliographische Referenzen

  • J. Liang, C. Liu, G. Q. Sun, L. Li, L. Zhang, M. Hou, et al., Nonlocal interactions between vegetation induce spatial patterning, <i>Appl. Math. Comput.</i>, <b>428</b> (2023), 127061. https://doi.org/10.1016/j.amc.2022.127061
  • L. F. Hou, G. Q. Sun, M. Perc, The impact of heterogeneous human activity on vegetation patterns in arid environments, <i>Commun. Nonlinear Sci. Numer. Simul.</i>, <b>126</b> (2023), 107461. https://doi.org/10.1016/j.cnsns.2023.107461
  • M. A. Abbasi, Fixed points stability, bifurcation analysis, and chaos control of a Lotka–Volterra model with two predators and their prey, <i>Int. J. Biomath.</i>, <b>17</b> (2024), 2350032. https://doi.org/10.1142/S1793524523500328
  • D. Cammarota, N. Z. Monteiro, R. Menezes, H. Fort, A. M. Segura, Lotka–Volterra model with Allee effect: Equilibria, coexistence and size scaling of maximum and minimum abundance, <i>J. Math. Biol.</i>, <b>87</b> (2023). https://doi.org/10.1007/s00285-023-02012-5
  • S. N. Chowdhury, J. Banerjee, M. Perc, D. Ghosh, Eco-evolutionary cyclic dominance among predators, prey, and parasites, <i>J. Theor. Biol.</i> <b>564</b> (2023), 111446. https://doi.org/10.1016/j.jtbi.2023.111446
  • J. Li, X. Liu, C. Wei, The impact of role reversal on the dynamics of predator-prey model with stage structure, <i>Appl. Math. Model.</i>, <b>104</b> (2022), 339–357. https://doi.org/10.1016/j.apm.2021.11.029
  • J. Llibre, Y. P. Mancilla-Martinez, Global attractor in the positive quadrant of the Lotka-Volterra system in $\mathbb{R}^2$, <i>Int. J. Bifur. Chaos Appl. Sci. Eng.</i>, <b>33</b> (2023), 2350147. https://doi.org/10.1142/S021812742350147X
  • P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, <i>J. Comput. Appl. Math.</i>, <b>413</b> (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401
  • P. A. Naik, Z. Eskandari, H. E. Shahkari, K. Owolabi, Bifurcation analysis of a discrete-time prey-predator model, <i>Bull. Biomath.</i>, <b>1</b> (2023), 111–123. https://doi.org/10.59292/bulletinbiomath.2023006
  • Z. Eskandari, P. A. Naik, M. Yavuz, Dynamical behaviors of a discrete-time preypredator model with harvesting effect on the predator, <i>J. Appl. Anal. Comput.</i>, <b>14</b> (2024), 283–297. https://doi.org/10.11948/20230212
  • M. S. Bowlin, I. A. Bisson, J. Shamoun-Baranes, J. D. Reichard, N. Sapir, P. P. Marra, et al., Grand challenges in migration biology, <i>Integr. Comp. Biol.</i>, <b>50</b> (2010), 261–279. https://doi.org/10.1093/icb/icq013
  • B. Hoare, <i>Animal Migration, Remarkable Journeys by Air, Land and Sea</i>, London, United Kingdom, 2009.
  • C. Egevang, I. J. Stenhouse, R. A. Phillips, J. R. D. Silk, Tracking of Arctic terns Sterna paradisaea reveals longest animal migration, <i>Proc. Natl. Acad. Sci.</i>, <b>107</b> (2010), 2078–2081. https://doi.org/10.1073/pnas.0909493107
  • I. Al-Darabsah, X. Tang, Y. Yuan, A prey-predator model with migrations and delays, <i>Dicrete Contin. Dyn. Syst. Ser. B</i>, <b>2</b> (2016), 737–761. https://doi.org/10.3934/dcdsb.2016.21.737
  • S. Apima, A predator-prey model with logistic growth for constant delayed migration, <i>J. Adv. Math. Comput. Sci.</i>, <b>35</b> (2020), 51–61. https://doi.org/10.9734/jamcs/2020/v35i330259
  • Y. Chen, F. Zhang, Dynamics of a delayed predator–prey model with predator migration, <i>Appl. Math. Model.</i>, <b>37</b> (2013), 1400–1412. https://doi.org/10.1016/j.apm.2012.04.012
  • G. Zhu, J. Wei, Global stability and bifurcation analysis of a delayed predator–prey system with prey immigration, <i>Electron. J. Qual. Theory Differ. Equations</i>, <b>13</b> (2016), 1–20. https://doi.org/10.14232/ejqtde.2016.1.13
  • A. Zeeshan, R. Faranak, H. Kamyar, A fractal-fractional-order modified predator-prey mathematical model with immigrations, <i>Math. Comput. Simul.</i>, <b>207</b> (2023), 466–481. https://doi.org/10.1016/j.matcom.2023.01.006
  • É. Diz-Pita, M. V. Otero-Espinar, Predator-prey models: A review of some recent advances, <i>Mathematics</i>, <b>9</b> (2021), 1783. https://doi.org/10.3390/math9151783
  • J. Sugie, Y. Saito, Uniqueness of limit cycles in a Rosenzweig-Mcarthur model with prey immigration, <i>SIAM J. Appl. Math.</i>, <b>72</b> (2012), 299–316. https://doi.org/10.1137/11084008X
  • M. Priyanka, P. Muthukumar, S. Bhakelar, Stability and bifurcation analysis of two-species prey-predator model incorporating external factors, <i>Int. J. Bifurcation Chaos</i>, <b>32</b> (2022), 2250172. https://doi.org/10.1142/S0218127422501723
  • T. Tahara, M. K. Areja, T. Kawano, J. M. Tubay, J. F. Rabajante, H. Ito, et al., Asymptotic stability of a modified Lotka-Volterra model with small immigrations, <i>Nat. Sci. Rep.</i>, <b>8</b> (2018), 7029. https://doi.org/10.1038/s41598-018-25436-2
  • D. Mukherjee, The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey, <i>Nonlinear Anal. Real World Appl.</i>, <b>31</b> (2016), 277–287. https://doi.org/10.1038/s41598-018-25436-2
  • F. Kangalgil, S. Isik, Effect of immigration in a predator-prey system: Stability, bifurcation and chaos, <i>AIMS Math.</i>, <b>7</b> (2022), 14354–14375. https://doi.org/10.3934/math.2022791
  • S. M. S. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system, <i>Comput. Ecol. Software</i>, <b>5</b> (2015), 187–200. https://doi.org/10.1186/s13662-015-0680-7
  • É. Diz-Pita, J. Llibre, M. V. Otero-Espinar, Global phase portraits of a predator-prey system, <i>Electron. J. Qual. Theory Differ. Equations</i>, <b>16</b> (2022), 1–13. https://doi.org/10.1186/s13662-015-0680-7
  • F. Dumortier, J. Llibre, J. C. Artés, <i>Qualitative Theory of Planar Differential systems</i>, Springer-Verlag, New York, 2006.
  • Y. Kuznetsov <i>Elements of Applied Bifurcation Theory</i>, 2nd edition, Springer, 1998.