Fusaria Strains as Biocontrol Agents: The Case of Strain Fo47 and Verticillium dahliae

  1. Veloso, Javier 1
  2. Lois, Marta
  3. Díaz, José 1
  1. 1 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

Libro:
Progress in Biological Control
  1. Jean-Michel Mérillon (ed. lit.)
  2. Kishan Gopal Ramawat (ed. lit.)

Editorial: Springer Cham

ISSN: 1573-5915 2543-0076

ISBN: 9783030510336 9783030510343

Ano de publicación: 2020

Páxinas: 309-331

Tipo: Capítulo de libro

DOI: 10.1007/978-3-030-51034-3_13 GOOGLE SCHOLAR lock_openAcceso aberto editor

Referencias bibliográficas

  • Subramanian CV (1971) Hyphomycetes: an account of Indian species, except Cercospora. Indian Council of Agricultural Research, New Delhi
  • Inderbitzin P, Subbarao KV (2014) Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology 104:564–574
  • Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV (2011) Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One 6:e28341
  • Zhao Y, Zhou T, Guo H (2016) Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog 12:e1005793
  • Klimes A, Dobinson KF, Thomma BP, Klosterman SJ (2015) Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium. Annu Rev Phytopathol 53:181–198
  • Zhou TT, Zhao YL, Guo HS (2017) Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathog 13:e1006275
  • Luo X, Xie C, Dong J, Yang X, Sui A (2014) Interactions between Verticillium dahliae and its host: vegetative growth, pathogenicity, plant immunity. Appl Microbiol Biotechnol 98:6921–6932
  • Goldberg N (2003) Verticillium wilt. In: Pernezny K, Roberts PD, Murphy JF, Goldberg NP (eds) Compendium of pepper diseases. APS Press, St. Paul, pp 21–22
  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86
  • Keykhasaber M, Thomma BPHJ, Hiemstra JA (2018) Verticillium wilt caused by Verticillium dahliae in woody plants with emphasis on olive and shade trees. Eur J Plant Pathol 150:21–37
  • Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, Yeh K-W, Sherameti I, Lou B, Baldwin IT, Oelmüller R (2014) The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by down regulation plant defense responses. BMC Plant Biol 14:268
  • Zeilinger S, Gupta VK, Dahms TE, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK, Nayak SC (2016) Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 40:182–207
  • Yadeta KA, Thomma BP (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97
  • Wilhelm S (1955) Longevity of the Verticillium wilt fungus in the laboratory and in the field. Phytopathology 45:180–181
  • Carroll CL, Carter CA, Goodhue RE, Cynthia Lin Lawell C-Y, Subbarao KV (2017) A review of control options and externalities for Verticillium wilts. Phytopathology 107:1–12
  • Daayf F (2015) Verticillium wilts in crop plants: pathogen invasion and host defence responses. Can J Plant Pathol 37:8–20
  • Sanogo S, El-Sebai OI, Sanderson R (2008) Severity of Verticillium wilt, plant growth, and spectral reflectance indices of Chile pepper under periodic flooding and no-flooding conditions. Hort Science 43:414–419
  • Butler DM, Rosskopf EN, Kokalis-Burelle N, Muramoto J, Shennan C, Koike S, Bolda M, Daugovish O (2009) Impact of anaerobic soil disinfestation on introduced inoculum of Phytophthora capsici and Verticillium dahliae. Phytopathology 99:S18
  • Morra L, Bilotto M (2006) Evaluation of new rootstocks for resistance to soilborne pathogens and productive behaviour of pepper (Capsicum annuum L.). J Hort Sci Biotechnol 81:518–524
  • Johnson S, Inglis D, Miles C (2014) Grafting effects on eggplant growth, yield, and Verticillium wilt incidence. Int J Vegetable Sci 20:3–20
  • Colla P, Gilardi G, Gullino ML (2012) A review and critical analysis of the European situation of soilborne disease management in the vegetable sector. Phytoparasitica 40:515–523
  • Vallad G, Qin Q, Grube R, Hayes R, Subbarao K (2006) Characterization of race-specific interactions among isolates of Verticillium dahliae pathogenic on lettuce. Phytopathology 96:1380–1387
  • Wang D, Bosland PW (2006) The genes of capsicum. Hort Science 41:1169–1187
  • Barchenger DW, Rodriguez K, Jiang L, Hanson SF, Bosland PW (2017) Allele-specific CAPS marker in a Ve1 homolog of Capsicum annuum for improved selection of Verticillium dahliae resistance. Mol Breeding 37:134
  • Li J, Zingen-Sell I, Buchenauer H (1996) Induction of resistance of cotton plants to Verticillium wilt and of tomato plants to Fusarium wilt by 3-aminobutyric acid and methyl jasmonate. J Plant Dis Protect 103:288–299
  • Zine H, Rifai LA, Faize M, Smaili A, Makroum K, Belfaiza M, Kabil EM, Koussa T (2016) Duality of acibenzolar-S-methyl in the inhibition of pathogen growth and induction of resistance during the interaction tomato/Verticillium dahliae. Eur J Plant Pathol 145:61–69
  • Garmendia I, Goicoechea I, Aguirreolea J (2004) Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against Verticillium wilt. Biol Control 31:296–305
  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol 61:964–976
  • Martínez-Beringola ML, Salto T, Vázquez G, Larena I, Melgarejo P, De Cal A (2013) Penicillium oxalicum reduces the number of cysts and juveniles of potato cyst nematodes. J Appl Microbiol 115:199–206
  • Maketon M, Amnuaykanjanasin A, Kaysorngup A (2014) A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand. World J Microbiol Biotechnol 30:727–736
  • Chemeltorit PP, Mutaqin KH, Widodo W (2017) Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10–86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil. Eur J Plant Pathol 147:157–166
  • Lozano-Tovar MD, Garrido-Jurado I, Quesada-Moraga E, Raya-Ortega MC, Trapero-Casas A (2017) Metarhizium brunneum and Beauveria bassiana release secondary metabolites with antagonistic activity against Verticillium dahliae and Phytophthora megasperma olive pathogens. Crop Protect 100:186–195
  • Zhang J, Chen J, Jia R, Ma Q, Zong Z, Wang Y (2018) Suppression of plant wilt diseases by nonpathogenic Fusarium oxysporum Fo47 combined with actinomycete strains. Biocontrol Sci Tech 28:562–573
  • Vázquez G, Paloma M, De Cal A, Larena I (2013) Persistence, survival, vertical dispersion, and horizontal spread of the biocontrol agent, Penicillium oxalicum strain 212, in different soil types. Appl Soil Ecol 67:27–36
  • Larena I, Vázquez G, De Cal A, Melgarejo P, Magan N (2014) Ecophysiological requirements on growth and survival of the biocontrol agent Penicillium oxalicum 212 in different sterile soils. Appl Soil Ecol 78:18–27
  • Yang W, Zheng L, Liu H-X, Wang K-B, Wang Y-P, Luo Y-M, Guo J-H (2014) Evaluation of the effectiveness of a consortium of three plant-growth promoting rhizobacteria for biocontrol of cotton Verticillium wilt. Biocontrol Sci Tech 24:489–502
  • Deketelaere S, Tyvaert L, Franca SC, Hofte M (2017) Desirable traits of a good biocontrol agent against Verticillium wilt. Front Microbiol 8:1186
  • Ruano-Rosa D, Prieto P, Rincón AM, Gómez-Rodríguez MV, Valderrama R, Barroso JB, Mercado-Blanco J (2016) Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. Biol Control 61:269–282
  • Gomez-Lama Cabanas C, Sesmero R, Valverde-Corredor A, Lopez-Escudero FJ, Mercado-Blanco J (2017) A split-root system to assess biocontrol effectiveness and defense-related genetic responses in above-ground tissues during the tripartite interaction Verticillium dahliae-olive-Pseudomonas fluorescens PICF7 in roots. Plant Soil 417:433–452
  • Guenoun K, Chattaoui M, Bouri M, Rhouma A, Naghmouchi K, Raies A (2019) Biological control of growth promoting rhizobacteria against Verticillium wilt of pepper plant. Biologia 74:237–250
  • Carballeira R, Veloso J, Díaz J (2012) Control of Verticillium wilt in pepper with two bacterial-based products and one fungal agent: a laboratory comparison. IOBC/WPRS Bull 78:351–354
  • Milijaševic-Marčić S, Todorović V, Stanojević O, Berić T, Stanković S, Todorović B, Potočnik I (2018) Antagonisdtic potential of Bacillus spp. isolates against bacterial pathogens of tomato and fungal pathogen of pepper. Pestic Phytomed (Belgrade) 33:9–18
  • Abada KA-M, Attia AMF, Zyton MA-L (2018) Management of pepper Verticillium wilt by combinations of inducer chemicals for plant resistance, bacterial bioagents and compost. J Appl Biotechnol Bioengineer 5:117–127
  • Lois M, Veloso J, García T, Larena I, Díaz J (2016) PO212 induces resistance in pepper against Verticillium dahliae. XVIII Congreso de la Sociedad Española de Fitopatología, Palencia (Spain). Book of abstracts, page 132
  • Calvo H, Marco P, Blanco D, Oria R, Venturini ME (2017) Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol 63:101–110
  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845
  • Veloso J, Alabouvette C, Olivain C, Flors V, Pastor V, García T, Díaz J (2016) Modes of action of the protective strain Fo47 in controlling Verticillium wilt of pepper. Plant Pathol 65:997–1007
  • Zhang L, Li W, Tao Y, Zhao S, Yao L, Cai Y, Niu Q (2019) Overexpression of the key virulence factor 1,3-1,4-beta-D-Glucanase in the endophytic bacterium Bacillus halotolerans Y6 to improve Verticillium resistance in cotton. J Agric Food Chem 67:6828–6836
  • Ren J, Wang J, Karthikeyan S, Liu H, Cai J (2019) Natural anti-phytopathogenic fungi compound phenol, 2, 4-bis (1, 1-dimethylethyl) from Pseudomonas fluorescens TL-1. Indian J Biochem Biophys 56:162–168
  • Zeng H, Ding H-p, Tian J, Zhang L-l (2018) Pore-forming mechanism of TUBP1 protein act on Verticillium dahliae. Process Biochem 73:6–14
  • Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R (2014) Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol 5:636
  • Nesemann K, Braus-Stromeyer SA, Harting R, Hoefer A, Kusch H, Ambrosio AB, Timpner C, Braus GH (2018) Fluorescent pseudomonads pursue media-dependent strategies to inhibit growth of pathogenic Verticillium fungi. Appl Microbiol Biotechnol 102:817–831
  • Kharazian ZA, Jouzani GS, Aghdasi M, Khorvash M, Zamani M, Mohammadzadeh H (2017) Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control 110:33–43
  • Mulero-Aparicio A, Cernava T, Turra D, Schaefer A, Di Pietro A, Javier Lopez-Escudero F, Trapero A, Berg G (2019) The role of volatile organic compounds and rhizosphere competence in mode of action of the non-pathogenic Fusarium oxysporum FO12 toward Verticillium wilt. Front Microbiol 10:1808
  • Yang Y, S-w Z, Li K-t (2019) Antagonistic activity and mechanism of an isolated Streptomyces corchorusii strain AUH-1 against phytopathogenic fungi. World J Microbiol Biotechnol 35:145
  • Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ, Fang YY, Guo HS (2016) Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol Plant 9:939–942
  • Moran-Díez ME, Carrero-Carron I, Belen Rubio M, Jimenez-Diaz RM, Monte E, Hermosa R (2019) Transcriptomic analysis of Trichoderma atroviride overgrowing plant-wilting Verticillium dahliae reveals the role of a new M14 metallocarboxypeptidase CPA1 in biocontrol. Front Microbiol 10:1120
  • Li J, Wu Y, Chen K, Wang Y, Hu J, Wei Y, Yang H (2018) Trichoderma cyanodichotomus sp. nov., a new soil-inhabiting species with a potential for biological control. Can J Microbiol 64:1020–1029
  • Li J-G, Jiang Z-Q, Xu L-P, Sun F-F, Guo J-H (2008) Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl 53:931–944
  • Cañizares MC, Lopez-Escudero FJ, Perez-Artes E, Garcia-Pedrajas MD (2018) Characterization of a novel single-stranded RNA mycovirus related to invertebrate viruses from the plant pathogen Verticillium dahliae. Arch Virol 163:771–776
  • Maldonado-Gonzalez M, Bakker PAHM, Prieto P, Mercado-Blanco J (2015) Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Front Microbiol 6:266
  • Schiliro E, Ferrara M, Nigro F, Mercado-Blanco J (2012) Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7. PLoS One 7:e48646
  • Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16:232
  • Veloso J, Díaz J (2013) Induced resistance to Botrytis cinerea in Capsicum annuum by a Fusarium crude elicitor fraction, free of proteins. Plant Biol 15:1040–1044
  • Silvar C, Merino F, Díaz J (2009) Resistance in pepper plants induced by Fusarium oxysporum f. sp lycopersici involves different defence-related genes. Plant Biol 11:68–74
  • Diaz J, Silvar C, Varela MM, Bernal A, Merino F (2005) Fusarium confers protection against several mycelial pathogens of pepper plants. Plant Pathol 54:773–780
  • McKinnon AC, Glare TR, Ridgway HJ, Mendoza-Mendoza A, Holyoake A, Godsoe WK, Bufford JL (2018) Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed Zea mays plants. Front Microbiol 9:1161
  • Rybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G (2017) Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa. Front Plant Sci 8:1294
  • Meschke H, Walter S, Schrempf H (2012) Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana. Environ Microbiol 14:940–952
  • Jimenez-Ruiz J, Leyva-Perez MO, Gomez-Lama Cabanas C, Barroso JB, Luque F, Mercado-Blanco J (2019) The transcriptome of Verticillium dahliae responds differentially depending on the disease susceptibility level of the olive (Olea europaea L.) cultivar. Genes (Basel) 10:E251
  • Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325
  • Biles CL, Martyn RD (1989) Local and systemic resistance induced in watermelons by formae speciales of Fusarium oxysporum. Phytopathology 79:856–860
  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502
  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544
  • Alabouvette C, De La Broise D, Lemanceau P, Couteaudier Y, Louvet J (1987) Utilisation de souches non pathogènes de Fusarium pour lutter contre les fusarioses: Situation actuelle dans la pratique. EPPO Bull 17:665–674
  • Lemanceau P, Alabouvette C (1991) Biological control of Fusarium diseases by fluorescent pseudomonas and non-pathogenic Fusarium. Crop Prot 10:279–286
  • Kaur R, Singh RS (2007) Study of induced systemic resistance in Cicer arietinum L. due to nonpathogenic Fusarium oxysporum using a modified split root technique. J Phytopathol 155:694–998
  • Duijff BJ, Recorbet G, Bakker PAHM, Loper JE, Lemanceau P (1999) Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology 89:1073–1079
  • Benhamou N, Garand C (2001) Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by the non-pathogenic Fusarium oxysporum, strain Fo47. Phytopathology 91:730–740
  • Postma J, Rattink H (1992) Biological control of Fusarium wilt of carnation with a non-pathogenic isolate of Fusarium oxysporum. Can J Bot 70:1199–1205
  • Blok WJ, Zwankhuizen MJ, Bollen GJ (1997) Biological control of Fusarium oxysporum f. sp. asparagi by applying non-pathogenic isolates of F. oxysporum. Biocontrol Sci Tech 7:527–542
  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68:4044–4060
  • Veloso J, Díaz J (2012) Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. Plant Pathol 61:281–288
  • Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C (2003) Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl Environ Microbiol 69:5453–5462
  • Edel-Hermann V, Brenot S, Gautheron N, Aime S, Alabouvette C, Steinberg C (2009) Ecological fitness of the biocontrol agent Fusarium oxysporum Fo47 in soil and its impact on the soil microbial communities. FEMS Microbiol Ecol 68:37–45
  • Olivain C, Humbert C, Nahalkova J, Fatehi J, L’Haridon F, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol 72:1523–1531
  • Bolwerk A, Lagopodi AL, Lugtenberg BJJ, Bloemberg GV (2005) Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 18:710–721
  • van Loon LC, Bakker P, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483
  • Duijff B, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910
  • Olivain C, Alabouvette C, Steinberg C (2004) Production of a mixed inoculum of Fusarium oxysporum Fo47 and Pseudomonas fluorescens C7 to control Fusarium diseases. Biocontrol Sci Tech 14:227–238
  • Aimé S, Alabouvette C, Steinberg C, Olivain C (2013) The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol Plant-Microbe Interact 26:918–926
  • De Lamo FJ, Constantin ME, Fresno DH, Boeren S, Rep M, Takken FLW (2018) Xylem sap proteomics reveals distinct differences between R gene- and endophyte-mediated resistance against Fusarium wilt disease in tomato. Front Microbiol 9:2977
  • Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW (2019) Endophyte-mediated resistance in tomato to Fusarium oxysporum is independent of ET, JA, and SA. Front Plant Sci 10:979
  • Choi H, Hwang B (2015) Molecular and cellular control of cell death and defense signaling in pepper. Planta 241:1–27
  • Block A, Scmelz E, PJ O’D, Jones JB, Klee H (2005) Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant Physiol 138:1481–1490
  • Bao J, Fravel D, Lazarovits G, Chellemi D, van Berkum P, O’Neill N (2004) Biocontrol genotypes of Fusarium oxysporum from tomato fields in Florida. Phytoparasitica 32:9–20
  • Trouvelot S, Olivain C, Recorbet G, Migheli Q, Alabouvette C (2002) Recovery of Fusarium oxysporum Fo47 mutants affected in their biocontrol activity after transposition of the Fot1 element. Phytopathology 92:936–945
  • L’Haridon F, Aime S, Alabouvette C, Olivain C (2007) Lack of biocontrol capacity in a non-pathogenic mutant of Fusarium oxysporum f. sp. melonis. Eur J Plant Pathol 118:239–246
  • L’Haridon F, Aime S, Duplessis S, Alabouvette C, Steinberg C, Olivain C (2011) Isolation of differentially expressed genes during interactions between tomato cells and a protective or a non-protective strain of Fusarium oxysporum. Physiol Mol Plant Pathol 76:9–19
  • Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim W-B, Woloshuk C, Xie X, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Carmen Ruiz-Roldan M, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373
  • Simbaqueba J, Catanzariti A-M, Gonzalez C, Jones DA (2018) Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Mol Plant Pathol 19:2302–2318
  • van Dam P, Fokkens L, Ayukawa Y, van der Gragt M, ter Horst A, Brankovics B, Houterman PM, Ari T, Rep M (2017) A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci Rep 7:9042
  • Huang X-Q, Lu X-H, Sun M-H, Guo R-J, van Diepeningen AD, Li S-D (2019) Transcriptome analysis of virulence-differentiated Fusarium oxysporum f. sp. cucumerinum isolates during cucumber colonisation reveals pathogenicity profiles. BMC Genomics 20:570
  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123