Halogen transfer through halogen bonds in halogen-bound ammonia homodimers

  1. Crugeiras, Juan 1234
  2. Ríos, Ana 1234
  1. 1 Departamento de Química Física
  2. 2 Facultad de Química
  3. 3 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  4. 4 Spain
Revista:
Physical Chemistry Chemical Physics

ISSN: 1463-9076 1463-9084

Ano de publicación: 2016

Volume: 18

Número: 45

Páxinas: 30961-30971

Tipo: Artigo

DOI: 10.1039/C6CP06182F GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Physical Chemistry Chemical Physics

Resumo

Ab initio MP2(full)/aug-cc-pVTZ calculations have been carried out to investigate the halogen transfer between haloamines and ammonia. The results show that the formation of a halogen bond complex between ammonia and the protonated N-haloamine is a preliminary step in the halogen transfer process. The complexation energies, optimized geometries, topology of electron density and potential energy surfaces for halogen transfer in these complexes have been analysed. It has been found that halogen-bound ammonia homodimers ([H3NXNH3]+, with X = Cl, Br, I) formed by interaction between NH3 and H3NX+ are symmetric, and energetically more stable than the corresponding complexes formed between NH3 and H2NX. Calculated potential energy surfaces for the transfer of the central halogen atom between the two NH3 units in [H3NXNH3]+ show single well and double well potentials for short and large N–N distances, respectively. The particular case of fluorine complexes has also been analysed. The results provide an explanation for some of the experimental facts observed for halogen transfer reactions between amines in aqueous solution.

Información de financiamento

Referencias bibliográficas

  • Wajon, (1982), Inorg. Chem., 21, pp. 4258, 10.1021/ic00142a030
  • Snyder, (1982), Inorg. Chem., 21, pp. 2545, 10.1021/ic00137a005
  • Heeb, (2014), Water Res., 48, pp. 15, 10.1016/j.watres.2013.08.030
  • Henderson, (2001), J. Biol. Chem., 276, pp. 7867, 10.1074/jbc.M005379200
  • Klebanoff, (2013), J. Leukocyte Biol., 93, pp. 185, 10.1189/jlb.0712349
  • Wilcken, (2013), J. Med. Chem., 56, pp. 1363, 10.1021/jm3012068
  • Desiraju, (2013), J. Am. Chem. Soc., 135, pp. 9952, 10.1021/ja403264c
  • Priimagi, (2013), Acc. Chem. Res., 46, pp. 2686, 10.1021/ar400103r
  • Podgorsek, (2009), Angew. Chem., Int. Ed., 48, pp. 8424, 10.1002/anie.200901223
  • Minakata, (2009), Acc. Chem. Res., 42, pp. 1172, 10.1021/ar900059r
  • Galal-Gorchev, (1996), Pure Appl. Chem., 68, pp. 1731, 10.1351/pac199668091731
  • Luh, (2007), Environ. Sci. Technol., 41, pp. 5096, 10.1021/es0630801
  • Pereira, (2013), Water Res., 47, pp. 517, 10.1016/j.watres.2012.09.052
  • Deborde, (2008), Water Res., 42, pp. 13, 10.1016/j.watres.2007.07.025
  • E. L. Thomas and D. B.Learn, in Myeloperoxidase-Catalyzed Oxidation of Chloride and other Halides: The Role of Chloramines, ed. J. Everse, K. E. Everse and M. B. Grisham, CRC Press, Boca Raton, 1991, pp. 83–103
  • Thomas, (1995), J. Biol. Chem., 270, pp. 2906, 10.1074/jbc.270.7.2906
  • Weiss, (1986), Science, 234, pp. 200, 10.1126/science.3018933
  • van der Veen, (2009), Antioxid. Redox Signaling, 11, pp. 2899, 10.1089/ars.2009.2538
  • Davies, (2011), J. Clin. Biochem. Nutr., 48, pp. 8, 10.3164/jcbn.11-006FR
  • Vaillancourt, (2006), Chem. Rev., 106, pp. 3364, 10.1021/cr050313i
  • Lal, (1996), Chem. Rev., 96, pp. 1737, 10.1021/cr941145p
  • Rozen, (1996), Chem. Rev., 96, pp. 1717, 10.1021/cr941147+
  • Antelo, (2000), J. Chem. Soc., Perkin Trans. 2, pp. 2071, 10.1039/b003982i
  • Kiselyov, (2005), Chem. Soc. Rev., 34, pp. 1031, 10.1039/b509217p
  • Zefirov, (1982), Chem. Rev., 82, pp. 615, 10.1021/cr00052a004
  • Antelo, (1999), J. Chem. Soc., Perkin Trans. 2, pp. 651, 10.1039/a805675g
  • Calvo, (2007), J. Org. Chem., 72, pp. 3171, 10.1021/jo062356k
  • Calvo, (2009), J. Org. Chem., 74, pp. 5381, 10.1021/jo900876f
  • Calvo, (2010), Org. Biomol. Chem., 8, pp. 4137, 10.1039/c004976j
  • Sazonov, (2012), Russ. Chem. Rev., 81, pp. 317, 10.1070/RC2012v081n04ABEH004216
  • Grinblat, (2001), J. Am. Chem. Soc., 123, pp. 10738, 10.1021/ja011014n
  • Politzer, (2010), Phys. Chem. Chem. Phys., 12, pp. 7748, 10.1039/c004189k
  • Legon, (2010), Phys. Chem. Chem. Phys., 12, pp. 7736, 10.1039/c002129f
  • Sanchez-Sanz, (2012), Phys. Chem. Chem. Phys., 14, pp. 9880, 10.1039/c2cp40949f
  • Alkorta, (2008), J. Phys. Chem. A, 112, pp. 10856, 10.1021/jp806101t
  • Desiraju, (2013), Pure Appl. Chem., 85, pp. 1711, 10.1351/PAC-REC-12-05-10
  • Grabowski, (2001), J. Phys. Chem. A, 105, pp. 10739, 10.1021/jp011819h
  • Metrangolo, (2005), Acc. Chem. Res., 38, pp. 386, 10.1021/ar0400995
  • Carlsson, (2012), J. Am. Chem. Soc., 134, pp. 5706, 10.1021/ja301341h
  • Carlsson, (2012), Chem. Commun., 48, pp. 1458, 10.1039/C1CC15839B
  • Buergi, (1983), Acc. Chem. Res., 16, pp. 153, 10.1021/ar00089a002
  • Steiner, (2002), Angew. Chem., Int. Ed., 41, pp. 48, 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
  • Peterson, (2003), J. Chem. Phys., 119, pp. 11099, 10.1063/1.1622923
  • Peterson, (2003), J. Chem. Phys., 119, pp. 11113, 10.1063/1.1622924
  • Riley, (2007), J. Phys. Chem. A, 111, pp. 8257, 10.1021/jp073358r
  • D. A. McQuarrie , Statistical Mechanics, Harper & Row, New York, 1976
  • Boys, (1970), Mol. Phys., 19, pp. 553, 10.1080/00268977000101561
  • Simon, (1996), J. Chem. Phys., 105, pp. 11024, 10.1063/1.472902
  • Marenich, (2009), J. Phys. Chem. B, 113, pp. 6378, 10.1021/jp810292n
  • Bondi, (1964), J. Phys. Chem., 68, pp. 441, 10.1021/j100785a001
  • Hay, (1985), J. Chem. Phys., 82, pp. 270, 10.1063/1.448799
  • Wadt, (1985), J. Chem. Phys., 82, pp. 284, 10.1063/1.448800
  • Hay, (1985), J. Chem. Phys., 82, pp. 299, 10.1063/1.448975
  • Lu, (2012), J. Comput. Chem., 33, pp. 580, 10.1002/jcc.22885
  • Helminger, (1969), Phys. Rev., 188, pp. 100, 10.1103/PhysRev.188.100
  • Christen, (1987), J. Am. Chem. Soc., 109, pp. 7020, 10.1021/ja00257a019
  • Cazzoli, (1972), J. Mol. Spectrosc., 42, pp. 286, 10.1016/0022-2852(72)90084-7
  • Bader, (1987), J. Am. Chem. Soc., 109, pp. 7968, 10.1021/ja00260a006
  • Murray, (2009), Croat. Chem. Acta, 82, pp. 267
  • Riley, (2008), J. Chem. Theory Comput., 4, pp. 232, 10.1021/ct700216w
  • Elding, (1990), Acta Chem. Scand., 44, pp. 135, 10.3891/acta.chem.scand.44-0135
  • Artau, (2000), J. Am. Chem. Soc., 122, pp. 10667, 10.1021/ja001613e
  • Nizzi, (1998), J. Phys. Chem. A, 102, pp. 7674, 10.1021/jp9824508
  • Novoa, (1988), J. Phys. Chem., 92, pp. 6561, 10.1021/j100334a017
  • Ault, (1976), J. Am. Chem. Soc., 98, pp. 1591, 10.1021/ja00422a058
  • Ault, (1977), Inorg. Chem., 16, pp. 2024, 10.1021/ic50174a040
  • Tuinman, (1999), J. Am. Chem. Soc., 121, pp. 8397, 10.1021/ja991757x
  • Riley, (2009), J. Chem. Theory Comput., 5, pp. 155, 10.1021/ct8004134
  • Shields, (2010), Int. J. Quantum Chem., 110, pp. 2823, 10.1002/qua.22787
  • Riley, (2011), J. Mol. Model., 17, pp. 3309, 10.1007/s00894-011-1015-6
  • Gilday, (2015), Chem. Rev., 115, pp. 7118, 10.1021/cr500674c
  • Cavallo, (2016), Chem. Rev., 116, pp. 2478, 10.1021/acs.chemrev.5b00484
  • Kolár, (2016), Chem. Rev., 116, pp. 5155, 10.1021/acs.chemrev.5b00560
  • Braida, (2008), J. Phys. Chem. A, 112, pp. 13045, 10.1021/jp803808e
  • Ruasse, (1986), J. Phys. Chem., 90, pp. 4382, 10.1021/j100409a034
  • Scheiner, (1981), J. Am. Chem. Soc., 103, pp. 2169, 10.1021/ja00399a005
  • R. F. W. Bader , Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1990
  • R. J. Gillespie and P. L. A.Popelier, Chemical Bonding and Molecular Geometry: From Lewis to Electron Densities, Oxford University Press, New York, 2001
  • C. F. Matta and R. J.Boyd, The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Wiley-VCH, Winheim, 2007
  • Cremer, (1984), Croat. Chem. Acta, 57, pp. 1259
  • Jenkins, (2000), Chem. Phys. Lett., 317, pp. 97, 10.1016/S0009-2614(99)01306-8
  • Arnold, (2000), J. Am. Chem. Soc., 122, pp. 12835, 10.1021/ja0025705
  • Espinosa, (2002), J. Chem. Phys., 117, pp. 5529, 10.1063/1.1501133
  • Jensen, (2006), J. Chem. Educ., 83, pp. 1751, 10.1021/ed083p1751
  • Gillespie, (2007), J. Comput. Chem., 28, pp. 87, 10.1002/jcc.20545
  • Reed, (1990), J. Am. Chem. Soc., 112, pp. 1434, 10.1021/ja00160a022
  • Woon, (2009), Mol. Phys., 107, pp. 991, 10.1080/00268970802712431
  • Harcourt, (2011), J. Phys. Chem. A, 115, pp. 6610, 10.1021/jp111573z
  • Dunning, (2013), Acc. Chem. Res., 46, pp. 359, 10.1021/ar300154a
  • Rundle, (1947), J. Am. Chem. Soc., 69, pp. 1327, 10.1021/ja01198a028
  • Rundle, (1963), J. Am. Chem. Soc., 85, pp. 112, 10.1021/ja00884a026
  • Pimentel, (1951), J. Chem. Phys., 19, pp. 446, 10.1063/1.1748245
  • Minkin, (1999), Pure Appl. Chem., 71, pp. 1919, 10.1351/pac199971101919
  • Eliad, (2002), J. Phys. Org. Chem., 15, pp. 540, 10.1002/poc.482
  • Eigen, (1964), Angew. Chem., Int. Ed., 3, pp. 1, 10.1002/anie.196400011
  • De Rosa, (2013), J. Org. Chem., 78, pp. 7264, 10.1021/jo400776p
  • Higuchi, (1969), J. Chem. Soc. B, pp. 626, 10.1039/j29690000626
  • Pitman, (1969), J. Chem. Soc. B, pp. 1230, 10.1039/j29690001230
  • Ashtekar, (2014), J. Am. Chem. Soc., 136, pp. 13355, 10.1021/ja506889c