Cadmium concentration in cocoa beans produced in agroforestry systems of small producers in Panama

  1. Villalaz-Pérez, Jhon A. 1
  2. Casanoves, Fernando 2
  3. Villarreal-Núñez, José E. 1
  4. Santo-Pineda, Adolfo 1
  5. Gutiérrez-Lezcano, Abiel 1
  6. Merino, Agustín 3
  1. 1 Instituto de Innovación Agropecuaria de Panamá (IDIAP). Ciudad del Saber Clayton, Apdo. postal 6-4391, el Dorado 6A, Panama
  2. 2 Centro Agronómico Tropical de Investigación y Enseñanza, 30501 Turrialba, Costa Rica
  3. 3 Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, Lugo, Spain
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Ano de publicación: 2024

Volume: 22

Número: 1

Tipo: Artigo

DOI: 10.5424/SJAR/2024221-20405 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Spanish journal of agricultural research

Resumo

Aim of study: To calculate Cd concentration in cocoa plants and evaluate its relationship with available Cd and other soil properties. Area of study: Almirante, Bocas del Toro province, Panama, in 2020-2021. Material and methods: The study was carried out in 21 plots of eight cocoa-producing farms. The total area of each sampled plot was 300 m2. Soil samples were taken at a depth of 30 cm, and samples of the leaves and fruits of cocoa trees were also taken. Descriptive statistics and correlation analyses were carried out for soil variables and Cd in plants. The relationship between bioavailable Cd and soil physicochemical variables and between soil variables and Cd in plants was evaluated. Multiple linear regression was performed using the backward selection method. Main results: The pH was acidic (5.1) and the organic matter content of the soil was greater than 3%, suitable for immobilizing Cd from the soil. Total and bioavailable Cd averaged 0.10 mg kg-1 and 0.02 mg kg-1 respectively. The Cd levels in cocoa leaves exceeded the recommended levels of 0.5 mg kg-1. The Cd concentration in the cocoa bean was low (0.25 mg kg-1). Research highlights: The levels of bioavailable Cd found do not exceed the United States Environment Agency toxic limits in soil. The level of Cd found in the cocoa bean is below the limit of 0.8 mg kg-1 which is taken as a reference for chocolate, with total dry matter content ≥ 50% of the CODEX Alimentarius.

Referencias bibliográficas

  • Alloway BJ, 2013. Sources of heavy metals and metalloids in soils. In: Heavy metals in soil; Alloway BJ (Ed.), pp. 11-50. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-4470-7_2
  • Arévalo-Gardini E, Obando-Cerpa ME, Zúñiga-Cernades LB, Arévalo-Hernández CO, Baligar VC, He ZL, 2016. Heavy metals in soils of cocoa plantations (Theobroma cacao L.) in three regions of Peru. Appl Ecol 15(2): 81-89. https://doi.org/10.21704/rea.v15i2.747
  • Argüello D, Chavez E, Lauryssen F, Vanderschueren R, Smolders E, Montalvo D, 2019. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Sci Total Environ 649: 120-127. https://doi.org/10.1016/j.scitotenv.2018.08.292
  • Balzarini MG, González L, Tablada M, Casanoves F, Di Rienzo JA, Robledo CW, 2008. Infostat. User Manual, Editorial Brujas, Córdoba, Argentina. 331 pp.
  • Barraza F, Schreck E, Lévêque T, Uzu G, López F, Ruales J, et al., 2017. Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environ Pollut 229: 950-963. https://doi.org/10.1016/j.envpol.2017.07.080
  • Bermúdez S, Voora V, Larrea C, Luna E, 2022. Global Market Report. Cocoa prices and sustainability. https://www.iisd.org/publications?viewsreference[parent_entity_type]=node&viewsreference[parent_entity_id]=36&viewsreference[parent_field_name]=field_listing_type&page=10 [Jun 20, 2023].
  • Bravo Realpe IDS, Arboleda Pardo CA, Martín Peinado FJ, 2014. Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en retención de cadmio, en sistemas altoandinos de Colombia. Acta Agron 63(2): 164-174. https://doi.org/10.15446/acag.v63n2.39569
  • Cabalceta G, Molina E, 2006. Niveles críticos de nutrimentos en suelos de Costa Rica utilizando la solución extractora Mehlich 3. Agronomía Costarricense 30(2): 31-44.
  • Cameselle C, Gouveia S, 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater 361: 95-102. https://doi.org/10.1016/j.jhazmat.2018.08.062
  • Casteblanco JA, 2018. Heavy metals remediation techniques with potential application in cocoa cultivation. La Granja 27(1): 21-35. https://doi.org/10.17163/lgr.n27.2018.02
  • Dávila-Zamora EC, Reyes-Evangelista LA, Aldoradin-Puza E, Londoñe-Bailon P, Aleman-Polo M, 2020. Cd and Pb reduction in cocoa (Theobroma cacao L.) nib using two organic amendments. Revista Colombiana de Investigaciones Agroindustriales 7(1): 20-29. https://doi.org/10.23850/24220582.2776
  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW, 2020. InfoStat vers 2020. Centro de Transferencia InfoStad, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.
  • Engbersen N, Gramlich A, López M, Schwarz G, Hattendorf B, Gutiérrez O, et al., 2019. Cadmium accumulation and allocation in different cacao cultivars. Sci Total Environ 678: 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001
  • Fernández-Nieto A, Betancourt-González AR, 2018. Destino sostenible de los residuos generados en las plantas de beneficio avícola. AiBi Revista de investigación, administración e ingenieria 6(1): 11-22. https://doi.org/10.15649/2346030X.473
  • Florida Rofner N, 2021. Review of maximum limits for cadmium in cocoa (Theobroma cacao L.). La Granja 34(2): 117-130. https://doi.org/10.17163/lgr.n34.2021.08
  • Furcal-Beriguete P, Torres-Morales JL, 2020. Determinación de concentraciones de cadmio en plantaciones de Theobroma cacao L. en Costa Rica. Revista Tecnología En Marcha 33(1): 122-137. https://doi.org/10.18845/tm.v33i1.5027
  • Goebes P, Schmidt K, Seitz S, Both S, Bruelheide H, Erfmeier A, et al., 2019. The strength of soil-plant interactions under forest is related to a critical soil depth. Sci Rep 9: 8635. https://doi.org/10.1038/s41598-019-45156-5
  • Huamaní-Yupanqui HA, Mansilla-Minaya LG, Florida-Rofner N, Neira-Trujillo GM, 2012. Presencia de metales pesados en cultivo de cacao (Theobroma cacao L.) orgánico. Acta Agronómica 61(4): 339-344.
  • Huaraca-Fernández J, Pérez-Sosa L, Bustinza-Cabala L, Pampa-Quispe N, 2020. Organic amendments on the immobilization of cadmium in contaminated agricultural soils: a review. Technol Inform 31(4): 139-152. https://doi.org/10.4067/S0718-07642020000400139
  • Kabata-Pendias A, 2010. Trace elements in soils and plants (4th ed). CRC PRESS, 548 pp. https://doi.org/10.1201/b10158
  • Kruszewski B, Wiesław Obiedziński M, Kowalska J, 2018. Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. J Food Compos Anal 66: 127-135. https://doi.org/10.1016/j.jfca.2017.12.012
  • Liu N, Jiang Z, Li X, Liu H, Li N, Wei S, 2020. Mitigation of cadmium (Cd) accumulation in rice through the joint application of organic amendments and selenium (Se) in contaminated soils with high Cd content. Chemosphere 241: 125106. https://doi.org/10.1016/j.chemosphere.2019.125106
  • Mehlich A, 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15(12): 1409-1416. https://doi.org/10.1080/00103628409367568
  • Montemayor JC, Risterucci AM, López PA, Ortiz CF, Moreno A, Lanaud C, 2002. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity 89(5): 380-386. https://doi.org/10.1038/sj.hdy.6800156
  • Moreno J, Sevillano G, Valverde O, Loayza V, Haro R, Zambrano J, 2018. Soil from the coastal plane. In: The soils of Ecuador, pp: 27-77. Springer, Cham. https://doi.org/10.1007/978-3-319-25319-0_2
  • Peel MC, Finlayson BL, McMahon TA, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5): 1633-1644. https://doi.org/10.5194/hess-11-1633-2007
  • Puentes PYJ, Menjivar JC, Aranzazu F, 2016. Concentration of nutrients in leaves, a tool for nutritional diagnosis in cocoa. Agron Mesoam 27(2): 329-336. https://doi.org/10.15517/am.v27i2.19728
  • Rábago I, Aracil J, 2011. Buffer capacity for lead and cadmium contamination in soils in the Community of Madrid. PhD Thesis. Universidad Complutense, Madrid, Spain, 285 pp.
  • Ramtahal G, Yen IC, Bekele I, Bekele F, Wilson L, Maharaj K, et al., 2016. Relationships between cadmium in tissues of cacao trees and soils in plantations of Trinidad and Tobago. Food Nutr Sci 07(01): 37-43. https://doi.org/10.4236/fns.2016.71005
  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC, 2016. Cadmium bioavailability, uptake, toxicity and detoxification in soil plant system. Rev Environ Contam Toxicol 241: 73-137. https://doi.org/10.1007/398_2016_8
  • Sikora FJ, Wolt J, 1986. Effect of cadmium and zinc treated sludge on yield and cadmium-zinc uptake of corn. J Environ Qual 15: 340-345. https://doi.org/10.2134/jeq1986.00472425001500040005x
  • Snoeck D, Koko L, Joffre J, Bastide P, Jagoret P, 2016. Cocoa nutrition and fertilization. In: Sustainable agriculture reviews, vol 19; Lichtfouse E (ed). Springer International Publishing, Cham. pp: 155-202. https://doi.org/10.1007/978-3-319-26777-7_4
  • Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th Edition, USDA-Natural Resources Conservation Service, Washington DC.
  • Teixeira PC, Donagemma GK, Fontana To, Teixeira WG, 2017. Manual de métodos de análise do solo, 3rd ed. rev. Brasília, DF: Embrapa, 573 pp.
  • Walkley A, Black AI, 1934. An examination of the method for determination soil organic matter, and a proposed codification of the chromic acid titration method. Soil Sci 37: 29-38. https://doi.org/10.1097/00010694-193401000-00003