Tribological improvement of potential lubricants for electric vehicles using double functionalized graphene oxide as additives
- Liñeira del Río, José M.
- Alonso Pérez, Gabriel
- Martínez, Adrián
- Peña, Diego
- Fernández, Josefa
ISSN: 0301-679X
Datum der Publikation: 2024
Ausgabe: 193
Seiten: 109402
Art: Artikel
Andere Publikationen in: Tribology International
Zusammenfassung
The aim of the present research is to analyze thermophysical and tribological properties of PAO4 nanolubricants containing functionalized (GO-polyethyleneimine-oleic acid, GO-PEI-OA) and non-functionalized (GO) graphene oxide. Nanodispersions of these NPs were prepared, observing a better stability for the GO-PEI-OA nanolubricants. As for the tribological properties, significant improvements in coefficient of friction were obtained comparing with the base oil, being 28% for GO-PEI-OA (0.10 wt%). Concerning the anti-wear behavior, better results were obtained for GO-PEI-OA nanolubricants (0.15 wt%) with improvements of about 27%, 54% and 60% for the diameter, depth, and area of the wear track, respectively. Finally, Raman spectroscopy and surface roughness measurements were used to identify the tribological mechanisms of tribofilm formation and repairing.
Informationen zur Finanzierung
Bibliographische Referenzen
- Holmberg, (2019), Tribology Int, 135, pp. 389, 10.1016/j.triboint.2019.03.024
- Aguilar-Rosas, (2023), Tribology Int, 188, 10.1016/j.triboint.2023.108848
- A. Gupta, Characterization of engine and transmission lubricants for electric, hybrid, and plug-in hybrid vehicles (Columbus, OH: Ohio State University), (2012).
- Gulzar, (2016), J Nanopart Res, 18, pp. 223, 10.1007/s11051-016-3537-4
- Singh, (2021), Mater Today: Proc, 44, pp. 5018
- Mariño, (2023), J Mol Liq, 382, 10.1016/j.molliq.2023.121913
- Wang, (2023), J Mol Liq, 389, 10.1016/j.molliq.2023.122821
- Demas, (2012), Tribology Lett, 47, pp. 91, 10.1007/s11249-012-9965-0
- Dai, (2016), Tribology Int, 102, pp. 88, 10.1016/j.triboint.2016.05.020
- Nyholm, (2023), Carbon, 201, pp. 1200, 10.1016/j.carbon.2022.10.035
- Wang, (2023), Adv Colloid Interface Sci, 321, 10.1016/j.cis.2023.103004
- Samanta, (2021), Soft Matter, 17, pp. 7014, 10.1039/D1SM00690H
- Chen, (2019), Lubricants, 7, 10.3390/lubricants7010007
- Wang, (2021), 8
- Berman, (2014), Mater Today, 17, pp. 31, 10.1016/j.mattod.2013.12.003
- Yu, (2022), Tribology Int, 165, 10.1016/j.triboint.2021.107273
- Mustafa, (2022), 34, pp. 1
- Kalin, (2012), Wear, 280-281, pp. 36, 10.1016/j.wear.2012.01.011
- Chimeno-Trinchet, (2020), J Ind Eng Chem, 87, pp. 152, 10.1016/j.jiec.2020.03.032
- Liñeira del Río, (2019), J Mol Liq, 274, pp. 568, 10.1016/j.molliq.2018.10.107
- Liñeira del Río, (2021), J Mol Liq, 336, 10.1016/j.molliq.2021.116885
- González, (2013), Tribology Trans, 56, pp. 887, 10.1080/10402004.2013.810319
- Dai, (2022), Vib Spectrosc, 123, 10.1016/j.vibspec.2022.103452
- Chen, (2014), J Nanomater, 2014
- Liñeira del Río, (2023), J Mol Liq, 371, 10.1016/j.molliq.2022.121097
- Gaciño, (2011), J Chem Eng Data, 56, pp. 4984, 10.1021/je200883w
- Liñeira del Río, (2018), J Mol Liq, 268, pp. 854, 10.1016/j.molliq.2018.07.107
- Nasser, (2020), J Mol Liq, 311, 10.1016/j.molliq.2020.113343
- Liñeira del Río, (2020), Nanomaterials, 10, pp. 683, 10.3390/nano10040683
- Samanta, (2019), Thin Solid Films, 683, pp. 16, 10.1016/j.tsf.2019.05.032
- Ahmad, (2018), Mikrochim Acta, 185, pp. 290, 10.1007/s00604-018-2829-z
- Ferrari, (2007), Solid State Commun, 143, pp. 47, 10.1016/j.ssc.2007.03.052
- Li, (2016), Adv Mater Interfaces, 3, 10.1002/admi.201600700
- Zaaba, (2017), Procedia Eng, 184, pp. 469, 10.1016/j.proeng.2017.04.118
- Ismail, (2017), Mater Sci Eng: B, 222, pp. 34, 10.1016/j.mseb.2017.04.010
- Sun, (2008), 48, pp. 1824
- Liñeira del Río, (2024), J. Mol. Liq., 397, 10.1016/j.molliq.2024.124036