Fotogrametría SfM de bajo costo para monitorización de ensayos sobre estructuras laminares reticulares de madera deformadas elásticamente a escala real

  1. Ortiz-Sanz, Juan 1
  2. Gil-Docampo, Mariluz 1
  3. Bastos, Guillermo 1
  4. Lara-Bocanegra, Antonio José 2
  1. 1 Departamento de Ingeniería Agroforestal. Universidad de Santiago de Compostela. Lugo. España
  2. 2 Departamento de Estructuras y Física de Edificación. Universidad Politécnica de Madrid. España
Revista:
Maderas: Ciencia y tecnología

ISSN: 0717-3644 0718-221X

Ano de publicación: 2024

Volume: 26

Número: 1

Tipo: Artigo

DOI: 10.22320/S0718221X/2024.08 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Maderas: Ciencia y tecnología

Resumo

Numerical models of the resistance of structures must be validated through the measurement of their deformation under load, which is made difficult by size and complexity. In the present study, the geometry of a large reticular laminar structure is determined after a load test. The structure was loaded at its five central nodes with a suspended weight of 105 kg per node. The 3D model of the structure without load and under load was generated using the photogrammetric with using software PhotoModeler Scanner and Metashape. The maximum error in measuring the distances on the scene was 1,31 mm, corresponding to 0,17% concerning the diagonal of the structure’s base. The largest mean error occurred under a maximum load of 0,70 mm according to all Metashapee, and 0,44 mm in PhotoModeler Scanner. The profile of the structure under load is consistent with the predicted deformation. The measurement quality of the 3D model turned out to be highly uniform. This study reveals the use of photos that have been taken several years later, through photogrammetry using advanced software

Referencias bibliográficas

  • Abbaszadeh, S.; Rastiveis, H. 2017. Acomparison of close-range photogrammetry using a non-professional camera with field surveying for volume estimation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W4: 1-4. https://doi.org/10.5194/isprs-archives-XLII- 4-W4-1-2017
  • AGISOFT LLC. 2021. Agisoft. Metashape: Rusia. https://www.agisoft.com
  • Akinade, B.A. 2020. Investigation of the accuracy of photogrammetric point determination using amateur/ non-metric cameras. World Scientific News 145: 298-312. http://yadda.icm.edu.pl/yadda/element/bwmeta1. element.psjd-c06c1b48-eaae-4cb8-8cb7-97b0ba4117a9
  • Albert, J.; Maas, H.G.; Schade, A.; Schwarz, W. 2002. Pilot studies on photogrammetric bridge deformation measurement. https://www.researchgate.net/profile/Hans-Gerd-Maas/publication/334786265_ Pilot_studies_on_photogrammetric_bridge_deformation_measurement/links/5d4185814585153e59309b28/ Pilot-studies-on-photogrammetric-bridge-deformation-measurement.pdf?origin=publication
  • Armesto, J.; Lubowiecka, I.; Ordóñez, C.; Rial, F.I. 2009. FEM modeling of structures based on close range digital photogrammetry. Automation in Construction 18(5): 559-569. https://doi.org/10.1016/j. autcon.2008.11.006
  • Adriaenssens, S.; Block, P.; Veenendaal, D.; Williams, C. 2014. Shell structures for architecture: Form finding and optimization. Routledge: Londres, Reino Unido. 340 p. https://doi.org/10.4324/9781315849270
  • Caroti, G.; Piemonte, A.; Zaragoza, I.M.E.; Brambilla, G. 2018. Indoor photogrammetry using UAVs with protective structures: Issues and precision tests. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42(3W4): 137-142. https://doi.org/10.5194/isprs-archives- XLII-3-W4-137-2018
  • Casero, M., Covián, E.; González, A. 2020. Regularization methods applied to noisy response from beams under static loading. Journal of Engineering Mechanics 146(6): e4020038. https://doi.org/10.1061/ (ASCE)EM.1943-7889.0001765
  • Chilton, J.; Tang, G. 2016. Timber gridshells: Architecture, structure and craft. Routledge: Londres, Reino Unido. https://doi.org/10.4324/9781315773872
  • Eos Systems Scanner. 2018. PhotoModeler Scanner. Vancouver BC, Canada. https://www.photomodeler.com/products/scanner
  • EUR-Lex. European Union Law. 2014. Directive 2014/32/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of measuring instruments (recast). EU: Luxembourg. http://data.europa.eu/eli/ dir/2014/32/2015-01-27
  • Fraser, C.S. 1997. Innovations in automation for vision metrology systems. The Photogrammetric Record 15(90): 901-911. https://doi.org/10.1111/0031-868X.00099
  • Guindos, P.; Ortiz, J. 2013. The utility of low-cost photogrammetry for stiffness analysis and finite- element validation of wood with knots in bending. Biosystems Engineering 114(2): 86-96. https://doi. org/10.1016/j.biosystemseng.2012.11.002
  • Harris, R.; Dickson, M.; Kelly, O. 2004. The use of timber gridshells for long span structures. En: Proceedings of the 8th International Conference on Timber Engineering. Lahti, Finnland. https://researchportal. bath.ac.uk/en/publications/the-use-of-timber-gridshells-for-long-span-structures
  • Harris, R.; Gusinde, B.; Roynon, J. 2012. Design and construction of the pods sports academy, Scunthorpe, England. En: World Conference of Timber Engineering 2012. pp. 510-517). http://www.scopus. com/inward/record.url?scp=84871979269&partnerID=8YFLogxK
  • Hernández, E.L.; Gengnagel, C.; Sechelmann, S.; Rörig, T. 2011. On the materiality and structural behaviour of highly-elastic gridshell structures. En: Gengnagel, C.; Kilian, A.; Palz, N.; Scheurer, F. (Eds.). Computational Design Modeling. Springer-Verlag: Heidelberg, Alemania. pp 123-135. https://doi.org/10.1007/978-3-642-23435-4_15
  • Honório, L.M.; Pinto, M.F.; Hillesheim, M.J.; de Araújo, F.C.; Santos, A.B.; Soares, D. 2021. Photogrammetric process to monitor stress fields inside structural systems. Sensors 21(12): e4023. https://doi.org/10.3390/s21124023
  • Jiang, R.; Jáuregui, D.V.; White, K.R. 2008. Close-range photogrammetry applications in bridge measurement: Literature review. Measurement 41(8): 823-834. https://doi.org/10.1016/j. measurement.2007.12.005
  • Lara-Bocanegra, A.J.; Majano-Majano, A.; Arriaga, F.; Guaita, M. 2020a. Eucalyptus globulus finger jointed solid timber and glued laminated timber with superior mechanical properties: Characterisation and application in strained gridshells. Construction and Building Materials 265: e120355. https://doi.org/10.1016/j. conbuildmat.2020.120355
  • Lara-Bocanegra, A.J.; Roig, A.; Majano-Majano, A.; Guaita, M. 2020b. Innovative design and construction of a permanent elastic timber gridshell. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 173(5): 352-362. https://doi.org/10.1680/jstbu.19.00083
  • Lara-Bocanegra, A.J.; Majano-Majano, A.; Ortiz, J.; Guaita, M. 2022. Structural analysis and form- finding of triaxial elastic timber gridshells considering interlayer slips: Numerical modelling and full-scale test. Applied Sciences 12(11): e5335. https://doi.org/10.3390/app12115335
  • Lewis, B. 2011. Centre Pompidou-Metz: Engineering the roof. The Structural Engineer: journal of the Institution of Structural Engineer 89(18): 20-26. https://dialnet.unirioja.es/servlet/articulo?codigo=3734367
  • Lieret, M.; Kogan, V.; Hofmann, C.; Franke, J. 2021. Automated exploration, capture and photogrammetric reconstruction of interiors using an autonomous unmanned aircraft. En: 2021 IEEE International Conference on Mechatronics and Automation - ICMA 2021. Takamatsu, Japón. pp. 301-306. https://doi.org/10.1109/ICMA52036.2021.9512707
  • Liu, L.; Sun, M.; Ren, X.; Liu, X.; Liu, L.; Zheng, H.; Li, X. 2017. Review on methods of 3D reconstruction from uav image sequences. Acta Scientiarum Naturalium Universitatis Pekinensis 53(6): 1165- 1178. http://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.052
  • Martínez, S.; Ortiz, J.; Gil, M. 2015. Geometric documentation of historical pavements using automated digital photogrammetry and high-density reconstruction algorithms. Journal of Archaeological Science 53: 1-11. https://doi.org/10.1016/j.jas.2014.10.003
  • Martínez, S.; Ortiz, J.; Gil, M.L.; Rego, M.T. 2013. Recording Complex Structures Using Close Range Photogrammetry: The Cathedral of Santiago de Compostela. The Photogrammetric Record 28(144): 375-395. https://doi.org/10.1111/phor.12040
  • Masuda, M.; Iwabuchi, A.; Murata, K. 1999. Analyses of fracture criteria using image correlation method. En: Boström, L. (Ed.). First RILEM Symposium on Timber Engineering. RILEM Publications SARL, Marne la Vallée Cedex 2, Francia. pp. 151-160. https://www.rilem.net/publication/publication/13?id_ papier=1358
  • Mills, J.; Barber, D. 2004. Geomatics techniques for structural surveying. Journal of Surveying Engineering 130(2): 56-64. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:2(56)
  • Mohamed, A.; Deng, Y.; Zhang, H.; Wong, S.H.F.; Uheida, K.; Zhang, Y.X.; Zhu, M.C.; Lehmann, M.; Quan, Y. 2021. Photogrammetric evaluation of shear modulus of glulam timber using torsion test method and dual stereo vision system. European Journal of Wood and Wood Products 79(5): 1209-1223. https://doi.org/10.1007/s00107-021-01729-8
  • Otto, F.; Hennicke, J.; Matsushita, K. 1974. IL 10 - Gitterschalen. Grid Shells. Institut für leichte Flächentragwerke. Universidad de Stuttgart, Stuttgart, Alemania. ISBN-13: 9783782820103
  • Park, S.W.; Park, H.S.; Kim, J.H.; Adeli, H. 2015. 3D displacement measurement model for health monitoring of structures using a motion capture system. Measurement 59: 352-362. https://doi.org/10.1016/j. measurement.2014.09.063
  • Peña Villasenín, S. 2020. Aplicaciones de la fotogrametría de bajo coste al estudio de patrimonio arqueológico y arquitectónico. Ph.D. Thesis, Universidad de Santiago de Compostela, EPSI, Lugo, España. http://hdl.handle.net/10347/20867
  • Remondino, F.; El-Hakim, S. 2006. Image-based 3D Modelling: A Review. The Photogrammetric Record 21(115): 269-291. https://doi.org/10.1111/j.1477-9730.2006.00383.x
  • RibbonSoft GmbH. 2018. QCAD - 2D CAD for Windows, Linux and Mac. Sarnen, Suiza. https://www.qcad.org/en
  • Rombouts, J.; Lombaert, G.; De Laet, L.; Schevenels, M. 2019. A novel shape optimization approach for strained gridshells: Design and construction of a simply supported gridshell. Engineering Structures 192: 166-180. https://doi.org/10.1016/j.engstruct.2019.04.101
  • Scaioni, M.; Barazzetti, L.; Giussani, A.; Previtali, M.; Roncoroni, F.; Alba, M.I. 2014. Photogrammetric techniques for monitoring tunnel deformation. Earth Science Informatics 7(2): 83-95. https://doi.org/10.1007/ s12145-014-0152-8
  • The Document Foundation. 2014. LibreOffice. Berlín, Alemania. https://www.libreoffice.org
  • Uheida, K.; Deng, Y.; Zhang, H.; Galuppi, L.; Gao, J.; Xie, L.; Huang, S.; Qin, X.; Wong, S.H.F.; Guo, J.; Zhang, G.; Mohamed, A. 2021. Determining equivalent-sectional shear modulus in torsion tests for laminated glass beams using photogrammetry method. Composite Structures 276: e114572. https://doi.org/10.1016/j.compstruct.2021.114572
  • Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. 2012. ‘Structure-from- Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179: 300- 314. https://doi.org/10.1016/j.geomorph.2012.08.021
  • Williams, N.; Bohnenberger, S.; Cherrey, J. 2014. A system for collaborative design on timber gridshells. In Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA): Kyoto, Japón. pp. 441-450. https://papers.cumincad.org/data/works/att/caadria2014_124.content.pdf
  • Xiang, S.; Cheng, B.; Zou, L.; Kookalani, S. 2020. An integrated approach of form finding and construction simulation for glass fiber-reinforced polymer elastic gridshells. The Structural Design of Tall and Special Buildings 29(5): e1698. https://doi.org/10.1002/tal.1698
  • Zhao, X.; Li, Q. 2017. A review on measurement technology for structural testing in civil engineering. Journal of Xi’an University of Architecture and Technology 49(1): 48-55. https://doi.org/10.15986/j.1006-7930.2017.01.008
  • Zou, J.; Meng, L. 2020. Design of a new coded target with large coding capacity for close- range photogrammetry and research on recognition algorithm. IEEE Access 8: 220285-220292. https://doi.org/10.1109/ACCESS.2020.3043044