Biosorption of methylene blue and malachite green from single and binary solutions by Pinus pinaster bark

  1. Litefti, Khaoula 1
  2. Freire, M. Sonia 1
  3. Stitou, Mostafa 2
  4. González-Álvarez, Julia 1
  1. 1 Departamento de Ingeniería Química. Universidad de Santiago de Compostela. España
  2. 2 Departamento de Química. Universidad Abdelmalek Essaâdi. Tetuán. Marruecos
Revista:
Maderas: Ciencia y tecnología

ISSN: 0717-3644 0718-221X

Ano de publicación: 2024

Volume: 26

Número: 1

Tipo: Artigo

DOI: 10.22320/S0718221X/2024.14 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Maderas: Ciencia y tecnología

Resumo

Aiming to develop a sustainable separation process reducing the water pollution, in this work Pinus pinaster (cluster pine) bark from a wood veneer industry was used for methylene blue and malachite green removal from aqueous systems. For single adsorption, the influence of time (up 8 h), adsorbent dose (2,5 - 5 - 10 g·L-1), temperature (25 ºC - 40 ºC - 60 ºC), pH (2 - 4 - 6) and particle size (0,1 mm - 0,5 mm, 0,5 mm - 1 mm and 1,6 mm - 2 mm) on adsorption was investigated. To study the initial concentration effect on binary adsorption, different concentrations (0 - 5 - 25 - 50 mg·L-1) were used at 25 ºC, natural pH and a dose of 5 g·L-1. High efficiency was obtained at pH = 4 (natural pH), dose of 5 g·L-1 and particle size of 0,5 - 1 mm. Adsorption percentages higher than 70 % were reached in less than one hour, with removal almost complete at equilibrium in single systems, without temperature influence. Methylene blue was slightly better adsorbed by bark. In binary systems, dyes exhibited competitive adsorption, decreasing their removal, especially increasing the initial concentration of the other dye. Dyes adsorption followed the pseudo-second order kinetic model, whereas the Langmuir isotherm explained adsorption equilibria in mono-component systems. High adsorption capacities (41,7 mg·g-1 for malachite green and 50,0 mg·g-1 for methylene blue) were obtained at 40 ºC and natural pH indicating that pine bark can be effectively used as biosorbent

Referencias bibliográficas

  • Abdallah, M.; Hijazi, A.; Hamieh, M.; Alameh, M.; Toufaily, J.; Rammal, H. 2016. Étude de l’adsorp- tion du Bleu de Méthylène sur un biomatériau à base de l’eucalyptus selon la taille des particules Treatment of industrial wastewater using a natural and biodegradable adsorbent based on Eucalyptus. Journal of Materials and Environmental Science 7: 4036-4048. https://www.jmaterenvironsci.com/Document/vol7/vol7_N11/432- JMES-2335-Abdallah.pdf
  • Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.Ch.; Choong, T.S.Y.; Lau, K.L.; Abdullah, M. 2019. Simultaneous Adsorption of Cationic Dyes from Binary Solutions by Thiourea-Modified Poly(acrylo- nitrile-co-acrylic acid): Detailed Isotherm and Kinetic Studies. Materials 12(18): e2903. https://dx.doi. org/10.3390/ma12182903
  • Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.Ch.; Choong, T.S.Y.; Lau, K.L.; Alias, N.H. 2020. Simul- taneous Adsorption of Malachite Green and Methylene Blue Dyes in a Fixed-Bed Column Using Poly(Acry- lonitrile-Co-Acrylic Acid) Modified with Thiourea. Molecules 25(11): e2650. https://doi.org/10.3390/mole- cules25112650
  • Asfaram, A.; Ghaedi, M.; Ghezelbash, G.R.; Pepe, F. 2017. Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions. Ecotoxicology and Environmental Safety 139: 219-227. https://doi.org/10.1016/j. ecoenv.2017.01.043
  • Bagheri, A.R.; Ghaedi, M.M.; Asfaram, A.; Hajati, S.; Ghaedi, A.M.; Bazrafshan, A.; Rahimi, M.R. 2016. Modeling and optimization of simultaneous removal of ternary dyes onto copper sulfide nanoparti- cles loaded on activated carbon using second-derivative spectrophotometry. Journal of the Taiwan Institute of Chemical Engineers 65: 212-224. https://doi.org/10.1016/j.jtice.2016.05.004
  • Bhatnagar, A.; Jain, A.K. 2005. A comparative adsorption study with different industrial wastes as ad- sorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science 281: 49-55. https://doi.org/10.1016/j.jcis.2004.08.076
  • Boakye, P.; Ohemeng-Boahen, G.; Darkwah, L.; Sokama-Neuyam, Y.A.; Appiah-Effah, E.; Oduro-Kwarteng, S.; Asamoah-Osei, B.; Asilevi, P.J.; Woo, S.H. 2022. Waste Biomass and Biomateri- als Adsorbents for Wastewater Treatment. Green Energy and Environmental Technology 2022(0): 1-25. https://doi.org/10.5772/geet.05
  • Chikri, R.; Elhadiri, N.; Benchanaa, M.; El maguana, Y. 2020. Efficiency of sawdust as low-cost ad- sorbent for dyes removal. Journal of Chemistry 2020: e8813420. https://doi.org/10.1155/2020/8813420
  • Dahri, M.K.; Khoo, M.R.R.; Lim, L.B.L. 2015. Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal 54 (4): 1253-1263. https://doi.org/10.1016/j.aej.2015.07.005
  • Freundlich, H. 1906. Über die adsorption in lösungen. Journal of Physical Chemistry A 57: 385-470. https://www.degruyter.com document/doi/10.1515/zpch-1907-5723/html
  • Ghaedi, M.; Hajati, S.; Barazesh, B.; Karimi, F.; Ghezelbash, G. 2013. Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of Brilliant green and Methylene blue. Journal of Industrial and Engineering Chemistry 19: 227-233. https://doi.org/10.1016/j.jiec.2012.08.006
  • Ho, Y.S.; McKay, G. 1999. Pseudo-second order model for sorption process. Process Biochemistry 34(5): 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  • Ho, S. 2022. Adsorbents for the removal of Phenol/Phenolics, Pesticides and Dyes from Wastewater sys- tems: A Review. Water 14(20): e3203. https://doi.org/10.3390/w14203203
  • Jawad, A.H.; Razuan, R.; Appaturi, J.N.; Wilson, L.D. 2019. Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surfaces and Interfaces 16: 76-84. https://doi.org/10.1016/j.surfin.2019.04.012
  • Jiang, F.; Dinh, D.M.; Hsieh, Y-L. 2017. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels. Carbohydrate Polymers 173: 286-294. https://doi.org/10.1016/j.carb- pol.2017.05.097
  • Lagergren, S. 1907. Zur theorie der sogenannten adsorption gelöster stoffe. Zeitschrift für Chemie und Industrie der Kolloide 2: e15. https://doi.org/10.1007/BF01501332
  • Langmuir, I. 1918. Adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40: 1361-1403. https://pubs.acs.org/doi/abs/10.1021/ja02242a004
  • Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. 2019. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports 9: e16530. https://doi.org/10.1038/s41598-019- 53046-z
  • Piccin, J.S.; Vieira, M.L.G.; Gonçalves, J.O.; Dotto, G.L.; Pinto, L.A.A. 2009. Adsorption of FD & C Red No. 40 by chitosan: Isotherms analysis. Journal of Food Engineering 95: 16-20. http://doi.org/10.1016/j. jfoodeng.2009.03.017
  • Rápó, E; Tonk, S. 2021. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 26 (17): e5419. https://www.mdpi.com/1420- 3049/26/17/5419
  • Turabik, M. 2008. Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric anal- ysis method. Journal of Hazardous Materials 158(1): 52-64. https://doi.org/10.1016/j.jhazmat.2008.01.033
  • Vázquez, G.; González-Álvarez, J.; Freire, M.S.; Calvo, M.; Antorrena, G. 2009. Determination of the optimal conditions for the adsorption of cadmium ions and phenol on chesnut (Castanea sativa) shell. Global NEST Journal 11(2): 196-204. https://doi.org/10.30955/gnj.000587
  • Witek-Krowiak, A. 2011. Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust. Chemical Engineering Journal 171: 976-985. https://doi.org/10.1016/j. cej.2011.04.048
  • Zou, W.; Bai, H.; Gao, S.; Li, K. 2013. Characterization of modified sawdust, kinetic and equilibrium study about methylene blue adsorption in batch mode. Korean Journal of Chemical Engineering 30 (1): 111- 122. https://doi.org/10.1007/s11814-012-0096-y