Modal Logic for Relationships between Sets

  1. Guallart, Nino 1
  1. 1 Universidad de Sevilla / Universidad de Santiago de Compostela
Revista:
Revista de Humanidades de Valparaíso

ISSN: 0719-4242 0719-4234

Ano de publicación: 2023

Título do exemplar: No. 22 (2023)

Número: 22

Páxinas: 23-38

Tipo: Artigo

Outras publicacións en: Revista de Humanidades de Valparaíso

Referencias bibliográficas

  • Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic: graph, Darst (Vol. 53). Cambridge University Press.
  • Chagrov, A., & Zakharyaschev, M. (1997). Modal Logic. Oxford University Press.
  • Chellas, B. F. (1980). Modal logic: an introduction. Cambridge University Press.
  • van Ditmarsch, H. (2003). The Russian cards problem. Studia logica, 75, 31-62.
  • van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic (Vol. 337). Springer Science & Business Media.
  • Fagin, R., Halpern, J. Y. (1988). Reasoning about Knowledge and Probability. In M. Y. Vardi (Ed.), Proceedings of the 2nd conference on Theoretical aspects of reasoning about knowledge (pp. 277-293). Morgan Kaufmann. https://doi.org/10.1145/174652.174658
  • Hamkins, J. D., Linnebo, Ø. (2022). The modal logic of set-theoretic potentialism and the potentialist maximality principles. The Review of Symbolic Logic, 15(1), 1-35.
  • Hayaki, R. (2006). Contingent objects and the Barcan formula. Erkenntnis, 64(1), 75-83.
  • Janssen-Lauret, F. (2022). Ruth Barcan Marcus and quantified modal logic. British Journal for the History of Philosophy, 30(2), 353-383.
  • Larsen, K. Skou, A. (1991). Bisimulation through Probabilistic Testing. Information and Computation, 94, 1-28.
  • Linnebo, Ø. (2010). Pluralities and sets. The Journal of Philosophy, 107(3), 144-164.
  • Linnebo, Ø. (2013). The potential hierarchy of sets. The Review of Symbolic Logic, 6(2), 205-228.
  • Linsky, B., & Zalta, E. N. (1994). In defense of the simplest quantified modal logic. Philosophical perspectives, 8, 431-458.
  • Plaza, J. (1989). Logics for public communications. In M. Emrich, M. Pfeifer, M. Hadzikadic, Z. Ras (Eds.), Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems. (pp. 201-216). Oak Ridge International Laboratory. [Republished in Plaza, J. (2007). Logics of public communications. Synthese, 158(2), 165-179. https://doi.org/10.1007/s11229-007-9168-7]