Influence of pH, humic acids, and salts on the dissipation of amoxicillin and azithromycin under simulated sunlight

  1. Lucía Rodríguez-López 1
  2. Vanesa Santás-Miguel 1
  3. Avelino Núñez-Delgado 2
  4. Esperanza Álvarez-Rodríguez 2
  5. Paula Pérez-Rodríguez 1
  6. Manuel Arias-Estévez 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Ano de publicación: 2022

Volume: 12

Número: 1

Tipo: Artigo

DOI: 10.3389/SJSS.2022.10438 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Spanish Journal of Soil Science: SJSS

Resumo

This work is focused on the study of the dissipation of the antibiotics amoxicillin (AMX) (an amino penicillin) and azithromycin (AZT) (belonging to the macrolide group), performed at a laboratory scale, under simulated sunlight and in the dark, at pH values 4.0, 5.5, and 7.2, and in the presence of humic acids and different inorganic salts. The results indicate that AMX is more affected than AZT by simulated sunlight, with half-lives ranging 7.7–9.9 h for AMX and 250–456 h for AZT. The lowest half-life values were obtained at pH 7.2 for AMX (7.7 h) and at pH 4.0 for AZT (250 h). Regarding the effect of various salts, the presence of NaNO3 causes that C/C0 decreases from 0.6 to 0 under simulated sunlight, having no effect on the dissipation of AMX in the dark. However, in the presence of FeCl3 at concentrations of 500 mg L−1, AMX suffered total dissipation, both under simulated sunlight and in the dark. For AZT the influence was lower, and the salts that caused a higher increase in its dissipation were NaCl (with C/C0 decreasing from 0.5 to 0.2) and CaCl2 (C/C0 decreasing from 0.5 to 0.3). The presence of humic acids caused a slight increase in the dissipation of AMX, both under simulated sunlight and in the dark, a fact that was attributed to the adsorption of the antibiotic onto these organic substances, which, however, caused a more marked increase in the dissipation of AZT (reaching 68%) under simulated sunlight. The overall results of this research can be considered clearly relevant, mainly to determine the fate of AMX and AZT when these antibiotics reach the environment as pollutants, either as regards their exposure to natural sunlight, or in relation to the use of inactivation/photo-degradation systems in decontamination procedures focused on environmental compartments.

Información de financiamento

Referencias bibliográficas

  • Almansba, A., Kane, A., Nasrallah, N., Wilson, J. M., Maachi, R., Lamaa, L., et al. (2021). An Engineering Approach Towards the Design of an Innovative Compact Photo-Reactor for Antibiotic Removal in the Frame of Laboratory and Pilot-Plant Scale. J. Photochem. Photobiol. A Chem. 418, 113445. doi:10.1016/j.jphotochem.2021.113445
  • Álvarez-Esmorís, C., Rodríguez-López, L., Fernández-Calviño, D., Núñez-Delgado, A., Álvarez-Rodríguez, E., and Arias-Estévez, M. (2022). Degradation of Doxycycline, Enrofloxacin, and Sulfamethoxypyridazine Under Simulated Sunlight at Different pH Values and Chemical Environments. Agronomy 12, 260. doi:10.3390/agronomy12020260
  • Arun, S., Kumar, R. M., Ruppa, J., Mukhopadhyay, M., Ilango, K., and Chakraborty, P. (2020). Occurrence, Sources and Risk Assessment of Fluoroquinolones in Dumpsite Soil and Sewage Sludge from Chennai, India. Environ. Toxicol. Pharmacol. 79, 103410. doi:10.1016/j.etap.2020.103410
  • Ay, F., and Kargi, F. (2010). Advanced Oxidation of Amoxicillin by Fenton's Reagent Treatment. J. Hazard. Mater. 179, 622–627. doi:10.1016/j.jhazmat.2010.03.048
  • Bavumiragira, J. P., Ge, J. n., and Yin, H. (2022). Fate and Transport of Pharmaceuticals in Water Systems: A Processes Review. Sci. Total Environ. 823, 153635. doi:10.1016/j.scitotenv.2022.153635
  • Bilal, M., Mehmood, S., Rasheed, T., and Iqbal, H. M. N. (2020). Antibiotics Traces in the Aquatic Environment: Persistence and Adverse Environmental Impact. Curr. Opin. Environ. Sci. Health 13, 68–74. doi:10.1016/j.coesh.2019.11.005
  • Brandt, K. K., Amézquita, A., Backhaus, T., Boxall, A., Coors, A., Heberer, T., et al. (2015). Ecotoxicological Assessment of Antibiotics: A Call for Improved Consideration of Microorganisms. Environ. Int. 85, 189–205. doi:10.1016/j.envint.2015.09.013
  • Buitrago, J. L., Sanabria, J., Gútierrez-Zapata, H. M., Urbano-Ceron, F. J., García-Barco, A., Osorio-Vargas, P., et al. (2020). Photo-Fenton Process at Natural Conditions of pH, Iron, Ions, and Humic Acids for Degradation of Diuron and Amoxicillin. Environ. Sci. Pollut. Res. 27, 1608–1624. doi:10.1007/s11356-019-06700-y
  • Canonica, S., Meunier, L., and von Gunten, U. (2008). Phototransformation of Selected Pharmaceuticals During UV Treatment of Drinking Water. Water Res. 42, 121–128. doi:10.1016/j.watres.2007.07.026
  • Chaturvedi, P., Giri, B. S., Shukla, P., and Gupta, P. (2021). Recent Advancement in Remediation of Synthetic Organic Antibiotics from Environmental Matrices: Challenges and Perspective. Bioresour. Technol. 319, 124161. doi:10.1016/j.biortech.2020.124161
  • Chen, Y., Hu, C., Qu, J., and Yang, M. (2008). Photodegradation of Tetracycline and Formation of Reactive Oxygen Species in Aqueous Tetracycline Solution under Simulated Sunlight Irradiation. J. Photochem. Photobiol. A Chem. 197, 81–87. doi:10.1016/j.jphotochem.2007.12.007
  • Čizmić, M., Ljubas, D., Rožman, M., Ašperger, D., Ćurković, L., and Babić, S. (2019). Photocatalytic Degradation of Azithromycin by Nanostructured TiO2 Film: Kinetics, Degradation Products, and Toxicity. Materials 12, 873. doi:10.3390/ma12060873
  • Conde-Cid, M., Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Díaz-Raviña, M., Fernández-Sanjurjo, M. J., et al. (2018a). Biotic and Abiotic Dissipation of Tetracyclines Using Simulated Sunlight and in the Dark. Sci. Total Environ. 635, 1520–1529. doi:10.1016/j.scitotenv.2018.04.233
  • Conde-Cid, M., Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Díaz-Raviña, M., Núñez-Delgado, A., et al. (2018b). Degradation of Sulfadiazine, Sulfachloropyridazine and Sulfamethazine in Aqueous Media. J. Environ. Manag. 228, 239–248. doi:10.1016/j.jenvman.2018.09.025
  • Cycoń, M., Mrozik, A., and Piotrowska-Seget, Z. (2019). Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 10, 338. doi:10.3389/fmicb.2019.00338
  • Dimitrakopoulou, D., Rethemiotaki, I., Frontistis, Z., Xekoukoulotakis, N. P., Venieri, D., and Mantzavinos, D. (2012). Degradation, Mineralization and Antibiotic Inactivation of Amoxicillin by UV-A/TiO2 Photocatalysis. J. Environ. Manag. 98, 168–174. doi:10.1016/j.jenvman.2012.01.010
  • Elmolla, E. S., and Chaudhuri, M. (2010). Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution by the UV/ZnO Photocatalytic Process. J. Hazard. Mater. 173, 445–449. doi:10.1016/j.jhazmat.2009.08.104
  • Farghaly, O. A. E.-M., and Mohamed, N. A. L. (2004). Voltammetric Determination of Azithromycin at the Carbon Paste Electrode. Talanta 62, 531–538. doi:10.1016/j.talanta.2003.08.026
  • Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O. A., and Dantas, G. (2012). The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 337, 1107–1111. doi:10.1126/science.1220761
  • Ghauch, A., Tuqan, A., and Assi, H. A. (2009). Antibiotic Removal from Water: Elimination of Amoxicillin and Ampicillin by Microscale and Nanoscale Iron Particles. Environ. Pollut. 157, 1626–1635. doi:10.1016/j.envpol.2008.12.024
  • Ghirardini, A., Grillini, V., and Verlicchi, P. (2020). A Review of the Occurrence of Selected Micropollutants and Microorganisms in Different Raw and Treated Manure - Environmental Risk Due to Antibiotics after Application to Soil. Sci. Total Environ. 707, 136118. doi:10.1016/j.scitotenv.2019.136118
  • Han, N., Yao, Z., Ye, H., Zhang, C., Liang, P., Sun, H., et al. (2019). Efficient Removal of Organic Pollutants by Ceramic Hollow Fibre Supported Composite Catalyst. Sustain. Mater. Technol. 20, e00108. doi:10.1016/j.susmat.2019.e00108
  • Han, N., Race, M., Zhang, W., Marotta, R., ZhangBokhari, C. A., Bokhari, A., et al. (2021). Perovskite and Related Oxide Based Electrodes for Water Splitting. J. Clean. Prod. 318, 128544. doi:10.1016/j.jclepro.2021.128544
  • Hassan, M. M., El Zowalaty, M. E., Lundkvist, Å., Järhult, J. D., Khan Nayem, M. R., Tanzin, A. Z., et al. (2021). Residual Antimicrobial Agents in Food Originating from Animals. Trends Food Sci. Technol. 111, 141–150. doi:10.1016/j.tifs.2021.01.075
  • Iwu, C. D., Korsten, L., and Okoh, A. I. (2020). The Incidence of Antibiotic Resistance within and beyond the Agricultural Ecosystem: A Concern for Public Health. MicrobiologyOpen 9, e1035. doi:10.1002/mbo3.1035
  • Jiang, M., Wang, L., and Ji, R. (2010). Biotic and Abiotic Degradation of Four Cephalosporin Antibiotics in a Lake Surface Water and Sediment. Chemosphere 80 (11), 1399–1405. doi:10.1016/j.chemosphere.2010.05.048
  • Kemper, N. (2008). Veterinary Antibiotics in the Aquatic and Terrestrial Environment. Ecol. Indic. 8, 1–13. doi:10.1016/j.ecolind.2007.06.002
  • Khan, H. K., Rehman, M. Y. A., and Malik, R. N. (2020). Fate and Toxicity of Pharmaceuticals in Water Environment: An Insight on Their Occurrence in South Asia. J. Environ. Manag. 271, 111030. doi:10.1016/j.jenvman.2020.111030
  • Kumar, S. B., Arnipalli, S. R., and Ziouzenkova, O. (2020). Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics 9, 688. doi:10.3390/antibiotics9100688
  • Li, Q., Jia, R., Shao, J., and He, Y. (2019). Photocatalytic Degradation of Amoxicillin via TiO2 Nanoparticle Coupling with a Novel Submerged Porous Ceramic Membrane Reactor. J. Clean. Prod. 209, 755–761. doi:10.1016/j.jclepro.2018.10.183
  • Liu, X., Zhou, Y., Zhang, J., Luo, L., Yang, Y., Huang, H., et al. (2018). Insight into Electro-Fenton and Photo-Fenton for the Degradation of Antibiotics: Mechanism Study and Research Gaps. Chem. Eng. J. 347, 379–397. doi:10.1016/j.cej.2018.04.142
  • Manyi-Loh, C., Mamphweli, S., Meyer, E., and Okoh, A. (2018). Antibiotic Use in Agriculture and its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 23, 795. doi:10.3390/molecules23040795
  • Mavronikola, C., Demetriou, M., Hapeshi, E., Partassides, D., Michael, C., Mantzavinos, D., et al. (2009). Mineralisation of the Antibiotic Amoxicillin in Pure and Surface Waters by Artificial UVA- and Sunlight-Induced Fenton Oxidation. J. Chem. Technol. Biotechnol. 84, 1211–1217. doi:10.1002/jctb.2159
  • Moosavi, F. S., and Tavakoli, T. (2016). Amoxicillin Degradation from Contaminated Water by Solar Photocatalysis Using Response Surface Methodology (RSM). Environ. Sci. Pollut. Res. 23, 23262–23270. doi:10.1007/s11356-016-7349-y
  • Muhammad, J., Khan, S., Su, J. Q., Hesham, A. E.-L., Ditta, A., Nawab, J., et al. (2020). Antibiotics in Poultry Manure and Their Associated Health Issues: A Systematic Review. J. Soils Sediments 20, 486–497. doi:10.1007/s11368-019-02360-0
  • Nippes, R. P., Macruz, P. D., da Silva, G. N., and Neves Olsen Scaliante, M. H. (2021). A Critical Review on Environmental Presence of Pharmaceutical Drugs Tested for the Covid-19 Treatment. Process Saf. Environ. Prot. 152, 568–582. doi:10.1016/j.psep.2021.06.040
  • Nnadozie, C. F., and Odume, O. N. (2019). Freshwater Environments as Reservoirs of Antibiotic Resistant Bacteria and Their Role in the Dissemination of Antibiotic Resistance Genes. Environ. Pollut. 254 (B), 113067. doi:10.1016/j.envpol.2019.113067
  • Rico, A., Vighi, M., Van den Brink, P. J., Horst, M., Macken, A., Lillicrap, A., et al. (2019). Use of Models for the Environmental Risk Assessment of Veterinary Medicines in European Aquaculture: Current Situation and Future Perspectives. Rev. Aquacult. 11, 969–988. doi:10.1111/raq.12274
  • Rodríguez-López, L., Cela-Dablanca, R., Núñez-Delgado, A., Álvarez-Rodríguez, E., Fernández-Calviño, D., and Arias-Estévez, M. (2021). Photodegradation of Ciprofloxacin, Clarithromycin and Trimethoprin: Influence of pH and Humic Acids. Molecules 26, 3080. doi:10.3390/molecules.26113080
  • Salam, L. B., and Obayori, O. S. (2019). Structural and Functional Metagenomic Analyses of a Tropical Agricultural Soil. Span. J. Soil Sci. 9 (1), 1–23. doi:10.3232/SJSS.2019.V9.N1.01
  • Santás-Miguel, V., Díaz-Raviña, M., Martín, A., García-Campos, E., Barreiro, A., Núñez-Delgado, A., et al. (2020). Medium-Term Influence of Tetracyclines on Total and Specific Microbial Biomass in Cultivated Soils of Galicia (NW Spain). Span. J. Soil Sci. 10, 217–232. doi:10.3232/SJSS.2020.V10.N3.05
  • Serwecińska, L. (2020). Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 12, 3313. doi:10.3390/w12123313
  • Silva, C., Louros, V., Silva, V., Otero, M., and Lima, D. (2021). Antibiotics in Aquaculture Wastewater: Is it Feasible to Use a Photodegradation-Based Treatment for Their Removal? Toxics 9, 194. doi:10.3390/toxics9080194
  • Sodhi, K. K., Kumar, M., and Singh, D. K. (2021). Insight into the Amoxicillin Resistance, Ecotoxicity, and Remediation Strategies. J. Water Process Eng. 39, 101858. doi:10.1016/j.jwpe.2020.101858
  • Solliec, M., Roy-Lachapelle, A., Gasser, M.-O., Coté, C., Généreux, M., and Sauvé, S. (2016). Fractionation and Analysis of Veterinary Antibiotics and Their Related Degradation Products in Agricultural Soils and Drainage Waters Following Swine Manure Amendment. Sci. Total Environ. 543, 524–535. doi:10.1016/j.scitotenv.2015.11.061
  • Su, C., Zhang, H., Cridge, C., and Liang, R. (2019). A Review of Multimedia Transport and Fate Models for Chemicals: Principles, Features and Applicability. Sci. Total Environ. 668, 881–892. doi:10.1016/j.scitotenv.2019.02.456
  • Talaiekhozani, A., Joudaki, S., Banisharif, F., Eskandari, Z., Cho, J., Moghadam, G., et al. (2020). Comparison of Azithromycin Removal from Water Using UV Radiation, Fe (VI) Oxidation Process and ZnO Nanoparticles. Int. J. Environ. Res. Pub. Heal. 17, 1758. doi:10.3390/ijerph17051758
  • Tang, J., Wang, S., Fan, J., Long, S., Wang, L., Tang, C., et al. (2019). Predicting Distribution Coefficients for Antibiotics in a River Water-Sediment Using Quantitative Models Based on Their Spatiotemporal Variations. Sci. Total Environ. 655, 1301–1310. doi:10.1016/j.scitotenv.2018.11.163
  • Tello, A., Austin, B., and Telfer, T. C. (2012). Selective Pressure of Antibiotic Pollution on Bacteria of Importance to Public Health. Environ. Health Perspect. 120, 1100–1106. doi:10.1289/ehp.1104650
  • Thiele-Bruhn, S. (2003). Pharmaceutical Antibiotic Compounds in Soils - A Review. J. Plant Nutr. Soil Sci. 166, 145–167. doi:10.1002/jpln.200390023
  • Tong, L., Eichhorn, P., Pérez, S., Wang, Y., and Barceló, D. (2011). Photodegradation of Azithromycin in Various Aqueous Systems under Simulated and Natural Solar Radiation: Kinetics and Identification of Photoproducts. Chemosphere 83, 340–348. doi:10.1016/j.chemosphere.2010.12.025
  • Tran, N. H., Hoang, L., Nghiem, L. D., Nguyen, N. M. H., Ngo, H. H., Guo, W., et al. (2019). Occurrence and Risk Assessment of Multiple Classes of Antibiotics in Urban Canals and Lakes in Hanoi, Vietnam. Sci. Total Environ. 692, 157–174. doi:10.1016/j.scitotenv.2019.07.092
  • Wang, J., and Wang, S. (2016). Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Wastewater: A Review. J. Environ. Manag. 182, 620–640. doi:10.1016/j.jenvman.2016.07.049
  • Xuan, R., Arisi, L., Wang, Q., Yates, S. R., and Biswas, K. C. (2010). Hydrolysis and Photolysis of Oxytetracycline in Aqueous Solution. J. Environ. Sci. Health, Part B 45, 73–81. doi:10.1080/03601230903404556
  • Yang, C.-W., Hsiao, W.-C., and Chang, B.-V. (2016). Biodegradation of Sulfonamide Antibiotics in Sludge. Chemosphere 150, 559–565. doi:10.1016/j.chemosphere.2016.02.064
  • Yang, Q., Gao, Y., Ke, J., Show, P. L., Ge, Y., Liu, Y., et al. (2021). Antibiotics: An Overview on the Environmental Occurrence, Toxicity, Degradation, and Removal Methods. Bioengineered 12, 7376–7416. doi:10.1080/21655979.2021.1974657
  • Yi, X., Lin, C., Ong, E. J. L., Wang, M., and Zhou, Z. (2019). Occurrence and Distribution of Trace Levels of Antibiotics in Surface Waters and Soils Driven by Non-point Source Pollution and Anthropogenic Pressure. Chemosphere 216, 213–223. doi:10.1016/j.chemosphere.2018.10.087
  • Zhang, Y., Liu, X., Cui, Y., Huang, H., Chi, N., and Tang, X. (2009). Aspects of Degradation Kinetics of Azithromycin in Aqueous Solution. Chroma 70, 67–73. doi:10.1365/s10337-009-1116-x
  • Zhang, Y., Xiao, Y., Zhong, Y., and Lim, T.-T. (2019). Comparison of Amoxicillin Photodegradation in the UV/H2O2 and UV/Persulfate Systems: Reaction Kinetics, Degradation Pathways, and Antibacterial Activity. Chem. Eng. J. 372, 420–428. doi:10.1016/j.cej.2019.04.160
  • Zhao, F., Yang, L., Chen, L., Li, S., and Sun, L. (2019). Bioaccumulation of Antibiotics in Crops under Long-Term Manure Application: Occurrence, Biomass Response and Human Exposure. Chemosphere 219, 882–895. doi:10.1016/j.chemosphere.2018.12.076