Mangroves Along the Brazilian Coast

  1. Ferreira, Tiago Osório 4
  2. Otero, Xosé Luis 1
  3. Nóbrega, Gabriel Nuto 23
  4. Queiroz, Hermano Melo 4
  5. Barcellos, Diego 5
  6. Vidal-Torrado, Pablo 4
  1. 1 Department of Soil Science and Agricultural Chemistry, School of Biology, CRETUS Institute, University of Santiago de Compostela, Santiago, Spain
  2. 2 Graduate Program in Earth Sciences (Geochemistry), Department of Geochemistry Federal Fluminense, University Niterói Brazil, Niterói, Brazil
  3. 3 Soil Science Department, Federal University of Ceará, Fortaleza, CE, Brazil
  4. 4 Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP, Piracicaba, São Paulo, 13418-900, Brazil
  5. 5 Department of Environmental Sciences, Rua São Nicolau, Federal University of São Paulo (UNIFESP), Diadema, SP, 09913-030, Brazil
Libro:
World Soils Book Series

ISSN: 2211-1255 2211-1263

ISBN: 9783031199479 9783031199493

Ano de publicación: 2023

Páxinas: 411-421

Tipo: Capítulo de libro

DOI: 10.1007/978-3-031-19949-3_15 GOOGLE SCHOLAR lock_openAcceso aberto editor

Resumo

Mangrove soils cover an extensive area along the Brazilian Coast providing countless ecological services, mostly linked to soil-forming processes (e.g., nutrient cycling; contaminant retention, and C sequestration). Due to the distinct characteristics of the coast (e.g., climate and relief) these soils present a wide variation regarding their characteristics, resulting from a differentiated intensity of the occurrence of processes such as paludization, gleization, sulfidization, and salinization, which affect the ecological services provided by such ecosystems. The intensity of the pedogenetic processes that occur in mangrove soils is controlled by the soil-forming factors, resulting in the high pedodiversity of mangrove soils along the Brazilian coast. For example, the daily tidal variation and coastal environmental setting, associated with the “classical” factors such as climate and seasonal variations, organisms and bioturbation, and (micro)relief influence the redox conditions, which control the intensity of soil-forming processes. Besides, anthropogenic activity may affect the occurrence of the pedogenetic processes leading to the degradation of such an important, but an endangered ecosystem.

Referencias bibliográficas

  • Albuquerque AGBM, Ferreira TO, Nóbrega GN et al (2014) Soil genesis on hypersaline tidal flats (apicum ecosystem) in a tropical semi-arid estuary (Ceará, Brazil). Soil Res 52:140. https://doi.org/10.1071/SR13179
  • Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345. https://doi.org/10.1016/0009-2541(94)90062-0
  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219. https://doi.org/10.1146/annurev-marine-010213-135020
  • Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Manag 3:313–322. https://doi.org/10.4155/cmt.12.20
  • Alongi DM (1997) Coastal ecosystem processes. CRC-Press
  • Alongi DM (2011) Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environ Sci Policy 14:462–470. https://doi.org/10.1016/j.envsci.2011.02.004
  • Alongi DM, Wattayakorn G, Pfitzner J et al (2001) Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Mar Geol 179:85–103. https://doi.org/10.1016/S0025-3227(01)00195-5
  • Araújo Júnior JM de C, Ferreira TO, Suarez-Abelenda M et al (2016) The role of bioturbation by Ucides cordatus crab in the fractionation and bioavailability of trace metals in tropical semiarid mangroves. Mar Pollut Bull 111:194–202. https://doi.org/10.1016/j.marpolbul.2016.07.011
  • Araújo Júnior JMC, Otero XL, Marques a. GB et al (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo-Marine Lett 32:289–300. https://doi.org/10.1007/s00367-011-0268-5
  • Atwood TB, Connolly RM, Almahasheer H et al (2017) Global patterns in mangrove soil carbon stocks and losses. Nat Clim Chang 7:523–528. https://doi.org/10.1038/nclimate3326
  • Barcellos D, Queiroz HM, Nóbrega GN et al (2019) Phosphorus enriched effluents increase eutrophication risks for mangrove systems in northeastern Brazil. Mar Pollut Bull 142:58–63. https://doi.org/10.1016/j.marpolbul.2019.03.031
  • Bernardino AF, Nóbrega GN, Ferreira TO (2021) Consequences of terminating mangrove’s protection in Brazil. Mar Policy 125:104389. https://doi.org/10.1016/j.marpol.2020.104389
  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23. https://doi.org/10.2475/ajs.268.1.1
  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615. https://doi.org/10.1016/0016-7037(84)90089-9
  • Bomfim MR, Santos JAG, Costa OV et al (2015) Genesis, characterization, and classification of mangrove soils in the Subaé River Basin, Bahia, Brazil. Rev Bras Ciência Do Solo 39:1247–1260. https://doi.org/10.1590/01000683rbcs20140555
  • Bouillon S, Borges A V., Castañeda-Moya E et al (2008) Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem Cycles 22:GB2013. https://doi.org/10.1029/2007GB003052
  • Cabral RL, Ferreira TO, Nóbrega GN et al (2020) How do plants and climatic conditions control soil properties in hypersaline tidal flats? Appl Sci 10:7624. https://doi.org/10.3390/app10217624
  • Costanza R, de Groot R, Sutton P et al (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
  • Cuadros J, Andrade G, Ferreira TO et al (2017) The mangrove reactor: fast clay transformation and potassium sink. Appl Clay Sci 140:50–58. https://doi.org/10.1016/j.clay.2017.01.022
  • Donato DC, Kauffman JB, Murdiyarso D et al (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297. https://doi.org/10.1038/ngeo1123
  • Ferreira TO, Otero XL, de Souza Junior VS et al (2010) Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). J Soils Sediments 10:995–1006. https://doi.org/10.1007/s11368-010-0224-4
  • Ferreira AC, Lacerda LD (2016) Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast Manag 125:38–46. https://doi.org/10.1016/j.ocecoaman.2016.03.011
  • Ferreira TO, Nóbrega GN, Queiroz HM et al (2021) Windsock behavior: climatic control on iron biogeochemistry in tropical mangroves. Biogeochemistry 156:437–452. https://doi.org/10.1007/s10533-021-00858-9
  • Ferreira TO, Queiroz HM, Nóbrega GN et al (2022) Litho-climatic characteristics and its control over mangrove soil geochemistry: a macro-scale approach. Sci Total Environ 811:152152. https://doi.org/10.1016/j.scitotenv.2021.152152
  • Ferreira TO, Otero XL, Vidal-Torrado P, Macías F (2007a) Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 142:36–46. https://doi.org/10.1016/j.geoderma.2007.07.010
  • Ferreira TO, Otero XL, Vidal-Torrado P, Macías F (2007b) Redox processes in mangrove soils under Rhizophora mangle in relation to different environmental conditions. Soil Sci Soc Am J 71:484–491. https://doi.org/10.2136/sssaj2006.0078
  • Ferreira TO, Vidal-Torrado P, Otero XL, Macías F (2007c) Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. CATENA 70:79–91. https://doi.org/10.1016/j.catena.2006.07.006
  • Friess DA, Rogers K, Lovelock CE et al (2019) The State of the world’s mangrove forests: past, present, and future. Annu Rev Environ Resour 44:89–115. https://doi.org/10.1146/annurev-environ-101718-033302
  • Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–310. https://doi.org/10.1006/ecss.1996.0120
  • Gelfenbaum G (2007) Tsunami inundation and sediment transport in vicinity of coastal mangrove forest. Coast Sediments 7. https://doi.org/10.1061/40926(239)112
  • Giri C, Ochieng E, Tieszen LL et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
  • Gomes FH, Ker JC, Ferreira TO et al (2016) Characterization and pedogenesis of mangrove soils from Ilhéus—BA, Brazil. Rev Ciência Agronômica 47:599–608. https://doi.org/10.5935/1806-6690.20160072
  • Gomes LE de O, Sanders CJ, Nobrega GN et al (2021a) Ecosystem carbon losses following a climate-induced mangrove mortality in Brazil. J Environ Manage 297:113381. https://doi.org/10.1016/j.jenvman.2021.113381
  • Gomes LE de O, Vescovi LC, Bernardino AF (2021b) The collapse of mangrove litterfall production following a climate-related forest loss in Brazil. Mar Pollut Bull 162:111910. https://doi.org/10.1016/j.marpolbul.2020.111910
  • Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25:729–738. https://doi.org/10.1111/geb.12449
  • Jimenez JA, Maia LP, Serra J, Morais J (1999) Aeolian dune migration along the Ceara coast, north-eastern Brazil. Sedimentology 46:689–701. https://doi.org/10.1046/j.1365-3091.1999.00240.x
  • Jimenez Z, Queiroz HM, Otero L, Nuto G (2021) Soil organic matter responses to mangrove restoration : a replanting experience in Northeast Brazil, 1–11
  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251. https://doi.org/10.1016/S0065-2881(01)40003-4
  • Kauffman JB, Bernardino AF, Ferreira TO et al (2018) Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecol Evol 8:5530–5540. https://doi.org/10.1002/ece3.4079
  • Kauffman JB, Bhomia RK (2017) Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: global and regional comparisons. PLoS ONE 12:e0187749. https://doi.org/10.1371/journal.pone.0187749
  • Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107. https://doi.org/10.1017/S0376892902000061
  • Kristensen E, Andersen F, Holmboe N et al (2000) Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat Microb Ecol 22:199–213. https://doi.org/10.3354/ame022199
  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219. https://doi.org/10.1016/j.aquabot.2007.12.005
  • Lee SY, Primavera JH, Dahdouh-Guebas F et al (2014) Ecological role and services of tropical mangrove ecosystems: a reassessment. Glob Ecol Biogeogr 23:726–743. https://doi.org/10.1111/geb.12155
  • Lima FAM, Costa RS (1975) Estudo preliminar das áreas de manguezais no estado do Ceará: áreas principais de ocorrência na faixa costeira de 38°36′W–41°15′W. O Solo 67:10–12
  • López-Angarita J, Roberts CM, Tilley A et al (2016) Mangroves and people: lessons from a history of use and abuse in four Latin American countries. For Ecol Manage 368:151–162. https://doi.org/10.1016/j.foreco.2016.03.020
  • Lovelock CE, Feller IC, Reef R et al (2017) Mangrove dieback during fluctuating sea levels. Sci Rep 7:1680. https://doi.org/10.1038/s41598-017-01927-6
  • Luther DA, Greenberg R (2009) Mangroves: a global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience 59:602–612. https://doi.org/10.1525/bio.2009.59.7.11
  • Machado W, Borrelli NL, Ferreira TO et al (2014) Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. Mar Pollut Bull 79:365–370. https://doi.org/10.1016/j.marpolbul.2013.11.016
  • Maia LP, Lacerda LD, de Monteiro LHU, Souza GM (2006) Atlas dos manguezais do Nordeste do Brasil: avaliação das áreas de manguezais dos Estados do Piauí, Ceará, Rio Grande do Norte, Paraíba e Pernambuco, 1st ed. SEMACE, Fortaleza
  • McGlashan DJ (2000) Coastal and estuarine environments: sedimentology. Geological Society of London, Geomorphology And Geoarchaeology
  • Mendonça SKG, de Moraes EMV, Otero XL et al (2021) Occurrence and pedogenesis of acid sulfate soils in northeastern Brazil. CATENA 196:104937. https://doi.org/10.1016/j.catena.2020.104937
  • Mokhtari M, Abd Ghaffar M, Usup G, Che Cob Z (2016) Effects of fiddler crab burrows on sediment properties in the mangrove Mudflats of Sungai Sepang. Malaysia. Biology (basel) 5:7. https://doi.org/10.3390/biology5010007
  • Murdiyarso D, Purbopuspito J, Kauffman JB et al (2015) The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Chang 5:1089–1092. https://doi.org/10.1038/nclimate2734
  • Neue HU, Gaunt JL, Wang ZP et al (1997) Carbon in tropical wetlands. Geoderma 79:163–185. https://doi.org/10.1016/S0016-7061(97)00041-4
  • Nóbrega GN, Ferreira TO, Artur AG et al (2015) Evaluation of methods for quantifying organic carbon in mangrove soils from semi-arid region. J Soils Sediments 15:282–291. https://doi.org/10.1007/s11368-014-1019-9
  • Nóbrega GN, Ferreira TO, Romero RE et al (2013) Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environ Monit Assess 185:7393–7407. https://doi.org/10.1007/s10661-013-3108-4
  • Nóbrega GN, Ferreira TO, Siqueira Neto M et al (2016) Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil). Sci Total Environ 542:685–693. https://doi.org/10.1016/j.scitotenv.2015.10.108
  • Nóbrega GN, Ferreira TO, Siqueira Neto M et al (2019) The importance of blue carbon soil stocks in tropical semiarid mangroves: a case study in Northeastern Brazil. Environ Earth Sci 78:369. https://doi.org/10.1007/s12665-019-8368-z
  • Nóbrega GN, Otero XL, Macías F, Ferreira TO (2014) Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents. Environ Monit Assess 186:5749–5762. https://doi.org/10.1007/s10661-014-3817-3
  • Otero XL, Araújo JMC, Barcellos D et al (2020) Crab bioturbation and seasonality control nitrous oxide emissions in semiarid mangrove forests (Ceará, Brazil). Appl Sci 10. https://doi.org/10.3390/app10072215
  • Otero XL, Ferreira TO, Huerta-Díaz MA et al (2009) Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia—SP, Brazil). Geoderma 148:318–335. https://doi.org/10.1016/j.geoderma.2008.10.016
  • Otero XL, Méndez A, Nóbrega GN et al (2017) High fragility of the soil organic C pools in mangrove forests. Mar Pollut Bull 119:460–464. https://doi.org/10.1016/j.marpolbul.2017.03.074
  • Polidoro BA, Carpenter KE, Collins L et al (2010) The Loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5:e10095. https://doi.org/10.1371/journal.pone.0010095
  • Prada-Gamero RM, Vidal-Torrado P, Ferreira TO (2004) Mineralogia e físico-química dos solos de mangue do rio iriri no canal de bertioga (santos, sp). Rev Bras Cienc Do Solo 28:233–243. https://doi.org/10.1590/S0100-06832004000200002
  • Pugliese Andrade GR, de Azevedo AC, Cuadros J et al (2014) Transformation of Kaolinite into Smectite and Iron-Illite in Brazilian Mangrove Soils. Soil Sci Soc Am J 78:655–672. https://doi.org/10.2136/sssaj2013.09.0381
  • Queiroz HM, Artur AG, Taniguchi CAK et al (2019) Hidden contribution of shrimp farming effluents to greenhouse gas emissions from mangrove soils. Estuar Coast Shelf Sci 221:8–14. https://doi.org/10.1016/j.ecss.2019.03.011
  • Queiroz HM, Ferreira TO, Taniguchi CAK et al (2020) Nitrogen mineralization and eutrophication risks in mangroves receiving shrimp farming effluents. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-09720-1
  • Queiroz HM, Nóbrega GN, Otero XL, Ferreira TO (2018) Are acid volatile sulfides (AVS) important trace metals sinks in semi-arid mangroves? Mar Pollut Bull 126:318–322. https://doi.org/10.1016/j.marpolbul.2017.11.020
  • Rovai AS, Twilley RR, Castañeda-Moya E et al (2018) Global controls on carbon storage in mangrove soils. Nat Clim Chang 8:534–538. https://doi.org/10.1038/s41558-018-0162-5
  • Sarker S, Masud‐Ul‐Alam M, Hossain MS et al (2020) A review of bioturbation and sediment organic geochemistry in mangroves. Geol J gj.3808. https://doi.org/10.1002/gj.3808
  • Schaeffer-Novelli Y, Cintrón-Molero G, Adaime RR et al (1990) Variability of mangrove ecosystems along the Brazilian Coast. Estuaries 13:204. https://doi.org/10.2307/1351590
  • Schaetzl RJ, Thompson ML (2005) Soils genesis and geomorphology, 1st edn. Cambridge University Press
  • Servino RN, Gomes LE de O, Bernardino AF (2018) Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion. Sci Total Environ 628–629:233–240. https://doi.org/10.1016/j.scitotenv.2018.02.068
  • Sherman RE, Fahey TJ, Howarth RW (1998) Soil-plant interactions in a neotropical mangrove forest: Iron, phosphorus and sulfur dynamics. Oecologia 115:553–563. https://doi.org/10.1007/s004420050553
  • Simonson RW (1959) Modern concepts of soil genesis—a symposium-Outline of a generalized theory of soil genesis. Soil Sci Soc Proc. https://doi.org/10.2136/sssaj1959.03615995002300020021x
  • Smith P, Cotrufo MF, Rumpel C et al (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1:665–685. https://doi.org/10.5194/soil-1-665-2015
  • Souza-Júnior VS, Vidal-Torrado P, Garcia-Gonzaléz MT et al (2008) Soil mineralogy of mangrove forests from the State of São Paulo, Southeastern Brazil. Soil Sci Soc Am J 72:848–857. https://doi.org/10.2136/sssaj2007.0197
  • Suárez-Abelenda M, Ferreira TO, Camps-Arbestain M et al (2014) The effect of nutrient-rich effluents from shrimp farming on mangrove soil carbon storage and geochemistry under semi-arid climate conditions in northern Brazil. Geoderma 213:551–559. https://doi.org/10.1016/j.geoderma.2013.08.007
  • Thomas N, Lucas R, Bunting P et al (2017) Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12:e0179302. https://doi.org/10.1371/journal.pone.0179302
  • Vidal-Torrado P, Ferreira TO, Otero XL et al (2010) Pedogenetic processes in mangrove soils. In: Biogeochemistry and pedogenetic process in saltmarsh and mangrove systems, pp 27–56
  • Wolanski E (1992) Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247:141–161. https://doi.org/10.1007/BF00008214
  • Wolanski E (1995) Transport of sediment in mangrove swamps. Asia-Pacific Symposium on Mangrove Ecosystems. Springer, Netherlands, Dordrecht, pp 31–42