Conformance Test Cases for the RDF Mapping Language (RML)

  1. Heyvaert, Pieter
  2. Chaves-Fraga, David
  3. Freddy Priyatna
  4. Corcho, Oscar
  5. Mannens, Erik
  6. Verborgh, Ruben
  7. Dimou, Anastasia
Buch:
Knowledge Graphs and Semantic Web

ISSN: 1865-0929 1865-0937

ISBN: 9783030213947 9783030213954

Datum der Publikation: 2019

Seiten: 162-173

Art: Buch-Kapitel

DOI: 10.1007/978-3-030-21395-4_12 GOOGLE SCHOLAR lock_openOpen Access editor

Zusammenfassung

Knowledge graphs are often generated using rules that apply semantic annotations to data sources. Software tools then execute these rules and generate or virtualize the corresponding RDF-based knowledge graph. RML is an extension of the W3C-recommended R2RML language, extending support from relational databases to other data sources, such as data in CSV, XML, and JSON format. As part of the R2RML standardization process, a set of test cases was created to assess tool conformance the specification. In this work, we generated an initial set of reusable test cases to assess RML conformance. These test cases are based on R2RML test cases and can be used by any tool, regardless of the programming language. We tested the conformance of two RML processors: the RMLMapper and CARML. The results show that the RMLMapper passes all CSV, XML, and JSON test cases, and most test cases for relational databases. CARML passes most CSV, XML, and JSON test cases regarding. Developers can determine the degree of conformance of their tools, and users determine based on conformance results to determine the most suitable tool for their use cases.

Bibliographische Referenzen

  • Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6, 167–195 (2015)
  • Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. Recommendation. World Wide Web Consortium (W3C), February 2014. http://www.w3.org/TR/rdf11-concepts/
  • Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language. W3C Recommendation. W3C (2012). http://www.w3.org/TR/r2rml/
  • Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. In: Web Semantics: Science, Services and Agents on the WWW (2013). ISSN 1570-8268. https://doi.org/10.1016/j.websem.2013.08.002 . http://www.sciencedirect.com/science/article/pii/S1570826813000383
  • Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: 23rd International Conference on WWW (2014). ISBN 978-1-4503-2744-2
  • Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8, 471–487 (2017)
  • Bischof, S., et al.: Mapping between RDF and XML with XSPARQL. J. Data Semant. (2012). ISSN 1861-2040. https://doi.org/10.1007/s13740-012-0008-7
  • Villazón-Terrazas, B., Hausenblas, M.: RDB2RDF Implementation Report. W3C Note. W3C (2012). https://www.w3.org/TR/rdb2rdf-implementations/
  • Dimou, A., et al.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: LDOW (2014)
  • Michel, F., et al.: Translation of relational and non-relational databases into RDF with xR2RML. In: WEBIST (2015)
  • Kyzirakos, K., et al.: GeoTriples: transforming geospatial data into RDF graphs using R2RML and RML mappings. J. Web Semant. 52, 16–32 (2018)
  • Konstantinou, N., et al.: Exposing scholarly information as Linked Open Data: RDFizing DSpace contents. Electron. Libr. 32(6), 834–851 (2014). https://doi.org/10.1108/EL-12-2012-0156
  • Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68(10), 973–1000 (2009)
  • Dimou, A., et al.: Machine-interpretable dataset and service descriptions for heterogeneous data access and retrieval. In: Proceedings of the 11th International Conference on Semantic Systems, SEMANTICS 2015. ACM (2015). ISBN 978-1-4503-3462-4. https://doi.org/10.1145/2814864.2814873
  • Chaves-Fraga, D., et al.: Virtual statistics knowledge graph generation from CSV files. In: Emerging Topics in Semantic Technologies: ISWC 8 Satellite Events. Studies on the Semantic Web, vol. 36, pp. 235–244. IOS Press (2018)
  • Battle, R., Kolas, D.: GeoSPARQL: enabling a geospatial semantic web. Semant. Web J. 3(4), 355–370 (2011)
  • Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_29
  • Vidal, M.-E., Endris, K.M., Jozashoori, S., Karim, F., Palma, G.: Semantic data integration of big biomedical data for supporting personalised medicine. In: Alor-Hernández, G., Sánchez-Cervantes, J.L., Rodríguez-González, A., Valencia-García, R. (eds.) Current Trends in Semantic Web Technologies: Theory and Practice. SCI, vol. 815, pp. 25–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06149-4_2
  • Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Recommendation. World Wide Web Consortium (W3C), March 2013. https://www.w3.org/TR/sparql11-query/
  • Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). Recommendation. World Wide Web Consortium (W3C) (2017). https://www.w3.org/TR/shacl/
  • Arenas, M., et al.: A Direct Mapping of Relational Data to RDF. W3C Recommendation. W3C, September 2012. https://www.w3.org/TR/rdb-direct-mapping/
  • Villazón-Terrazas, B., Hausenblas, M.: R2RML and Direct Mapping Test Cases. W3C Note. W3C (2012). http://www.w3.org/TR/rdb2rdf-test-cases/
  • Dimou, A., et al.: What factors influence the design of a linked data generation algorithm? In: Berners-Lee, T., et al. (eds.) Proceedings of the 11th Workshop on Linked Data on the Web, April 2018. http://events.linkeddata.org/ldow2018/papers/LDOW2018_paper_12.pdf