Testing the goodness of fit of a hilbertian autoregressive model

  1. González-Manteiga, Wenceslao
  2. Ruiz-Medina, María Dolores
  3. López-Pérez, A. M.
  4. Álvarez-Liébana, Javier
Revista:
arXiv - MATH - Statistics Theory

Ano de publicación: 2023

Tipo: Artigo

Resumo

The presented methodology for testing the goodness–of–fit of an Autoregressive Hilbertian model (ARH(1) model) provides an infinite–dimensional formulation of the approach proposed in Koul and Stute [38], based on empirical process marked by residuals. Applying a central and functional central limit result for Hilbert–valued martingale difference sequences, the asymptotic behavior of the formulated H–valued empirical process, also indexed by H, is obtained under the null hypothesis. Thelimiting process is H–valued generalized (i.e., indexed by H) Wiener process, leading to an asymptotically distribution free test. Consistency is also analyzed. The case of misspecified autocorrelation operator of the ARH(1) process is addressed as well. Beyond the Euclidean setting, this approach allows to implement goodness of fit testing in the context of manifold and spherical functional autoregressive processes.

Referencias bibliográficas

  • Alvarez-Liébana, J., Lopez-Pérez, A., Febrero-Bande, M. and Gonzalez-Manteiga, W. (2022). A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes. Submitted manuscript, arXiv :2206.12821.
  • Bagchi, P., Characiejus, V. and Dette, H. (2018). A simple test for white noise in functional time series. J. Time Ser. Anal. 39 54–74.
  • Berkes, I. , Horvath, L. and Rice, G. ´ (2016). On the asymptotic normality of kernel estimators of the long run covariance of functional time series 144 150–175.
  • Bosq, D. (2000). Linear Processes in Function Spaces. Springer, New York.
  • Bucher, A., Dette, H. and Andwieczorek, G. (2011). Testing model assumptions in functional regression models. J. Multivariate Anal. 102 1472–1488.
  • Caponera, A. and Marinucci, D. (2021). Asymptotics for spherical functional autoregressions. Ann Stat 49 346–369.
  • Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear regression models. Probab. Theory Relat. Fields 138 325–361.
  • Chiou, J.-M. and Muller, H.–G. ¨ (2007). Diagnostics for functional regression via residual processes. Comput. Statist. Data Anal. 51 4849–4863.
  • Constantinou, P., Kokoszka, P. and Reimherr, M. (2018). Testing separability of functional time series J. Time Ser. Anal. 39 731–747.
  • Crambes, C. and Ma, A. (2013). Asymptotics of prediction in functional linear regression with functional outputs. Bernoulli 19 2627–2651.
  • Cuesta-Albertos,J.A., Fraiman,R. and Andransford, T. (2007). A sharp form of the Cram´er–Wold theorem. J. Theoret. Probab. 20 201–209.
  • Cuesta–Albertos, J. A. and Garc´ıa-Portugu´es, E., FebreroBande, M. and Gonzalez-Manteiga, W. ´ (2019). Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. The Annals of Statistics 47 439–467.
  • Dautray, R. and Lions, J.L. (1985). Mathematical Analysis and Numerical Methods for Science and Technology. Volume 3. Spectral Theory and Applications. Springer, New York
  • Dedecker, J. and Merlevede, F. (2003). The conditional central limit theorem in Hilbert spaces. Stochastic Processes and their Applications 108 229–262.
  • Delsol, L., Ferraty ,F. and Andvieu, P. (2011b). Structural tests in regression on functional variable. In Recent Advances in Functional Data Analysis and Related Topics 77–83. Physica-Verlag/Springer, Heidelberg.