Thionic or Sulfidic Soils

  1. Chesworth, Ward
  2. Spaargaren, Otto
  3. Hadas, Amos
  4. Groenevelt, Pieter H.
  5. Otero, Xosé L.
  6. Ferreira, T. O.
  7. Vidal, P.
  8. Macías, F.
  9. Chesworth, W.
Libro:
Encyclopedia of Soil Science

ISSN: 1388-4360 1871-756X

Ano de publicación: 2008

Páxinas: 777-781

Tipo: Capítulo de libro

DOI: 10.1007/978-1-4020-3995-9_597 GOOGLE SCHOLAR lock_openAcceso aberto editor

Referencias bibliográficas

  • Berner, R.A., 1967. Termodynamic stability of sedimentary iron sulfides. Am. J. Sci., 265: 773–785.
  • Berner, R.A., 1970. Sedimentary pyrite formation. Am. J. Sci., 268: 1–23.
  • Davinson, W., 1991. The solubility of iron sulphides in synthectic and natural waters at ambient temperature. Aquat. Sci., 53: 309–329.
  • DiToro, D.M., Mahony, J.D., Hansen, D.J., Scott, K.J., Hicks, M.B., Mays, S.M., and Redmond, M.S., 1990. Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ. Toxicol. Chem., 9: 1489–1504.
  • DiToro D.M., Mahony J.D., Hansen D.J., Scott, K.J., Carlson A.R., and Ankley, G.T., 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol., 26: 96–101.
  • Goldhaber, M.B., and Kaplan, I.R., 1974. The sufur cycle. In Goldberg, E.D., ed. The Sea, Vol. 5. Marine Chemistry. New York: Wiley‐Intersciece, pp. 527–655.
  • Howarth, R.W., 1979. Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science, 203: 49–51.
  • Huerta‐Díaz, M.A., and Morse, J.W., 1992. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta, 56: 2681–2702.
  • IUSS Working Group WRB, 2006. World reference base for soil resources 2006, 2nd edn. World Soil Resources Reports No. 103. Rome: FAO, 128 pp.
  • Morse, J.W., and Rickard, D., 2004. Chemical dynamics of sedimentary acid volatile sulfide. Environ. Sci. Technol., 131A–135A.
  • Nordstrom, D.K., 1982. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Kittrick, J.A., Fanning, D.S., and Hossner, L.R., eds., Acid Sulfate Weathering. Soil Science Society of America Special Publication No. 10, Madison, WI: pp. 1–18.
  • Otero, X.L., Sánchez, J.M., and Macías, F., 2000. Bioaccumulation of heavy metals in thionic fluvisols by a marine polychaete (Nereis diversicolor): the role of metal sulfide. J. Environ. Qual., 29: 1133–1141.
  • Otero, X.L., and Macías, F., 2003. Spatial variation in pyritization of trace metals in salt marsh soils. Biogeochemistry, 62: 59–86.
  • Otero, X.L., and Macías, F., 2003. Spatial variation in pyitization of trace metals in salt-marsh soils. Biogeochemistry, 61: 247–268.
  • Otero, X.L., Ferreira T.O., Vidal-Torrado, P., and Macías, F., 2006. Spatial variation in pore water geochemistry on a mangrove system in the island of Pai Matos (Cananeia-Brazil). Applied Geochemistry, 21: 2171–2186.
  • Pons, L.J., Van Breemen, andDriessen, P.M., 1982. Physiography of coastal sediments and development of potential soil acidity. In Kittrick, J.A., Fanning, D.S., and Hossner, L.R., eds., Acid Sulfate Weathering. Soil Science Society of America Special Publication No. 10, Madison, WI: pp. 37–53.
  • Rickard, D., 1997. Kinetics of pyrite formation by the H 2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 °C: the rate equation. Geochim. Cosmochim. Acta, 61: 115–134.
  • Rickard, D., and Luther, G.W., III, 1997. Kinetics of pyrite formation by the H 2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 °C: the mechanism. Geochim. Cosmochim. Acta, 61: 135–147.
  • Soil Survey Staff, 1999. Soil taxonomy. A basic system of soil classification for making and interpreting soil survey. 2nd edition. United States Department of agriculture. Natural Resources Conservation service. Washington DC. USA.
  • Stumm, W., and Morgan, J.J., 1996. Aquatic Chemistry. 3rd edn. New York: Wiley. 1022 pp.