Quantum groupoids with projection
- J.N. Alonso Alvarez 1
- J.M. Fernández Vilaboa 2
- R. González Rodríguez 1
-
1
Universidade de Vigo
info
-
2
Universidade de Santiago de Compostela
info
- Helena Alburquerque (coord.)
- Samuel Lopes (coord.)
- Joana Teles (coord.)
Publisher: Centro Internacional de Matemática
ISBN: 978-989-95011-1-9
Year of publication: 2007
Pages: 151-174
Type: Book chapter
Abstract
In this survey we explain in detail how Radford’s ideas and results about Hopf algebraswith projection can be generalized to quantum groupoids in a strict symmetric monoidalcategory with split idempotents.
Bibliographic References
- [1] J.N. Alonso Alvarez, R. González Rodríguez, J.M. Fernánde Vilaboa, M.P. López López, E. Villanueva Novoa, Weak Hopf algebras with projection and weak smash bialgebra structures, J. of Algebra, 269 (2003), 701-725.
- [2] J.N. Alonso Alvarez, R. González Rodríguez, Crossed products for weak Hopf algebras with coalgebra splitting, J. of Algebra, 281 (2004), 731-752.
- [3] Alonso Alvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Yetter-Drinfeld modules and projections of weak Hopf algebras, J. of Algebra (to appear), (2006).
- [4] Alonso Alvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Weak Hopf algebras and weak Yang-Baxter operators, preprint (2006).
- [5] Y. Bespalov, Crossed modules and quantum groups in braided categories, Appl. Categ. Struct. (2)5 (1997), 155-204.
- [6] R. Blattner, M. Cohen and S. Montgomery, Crossed products and inner actions of Hopf algebras, Transactions of the American Mathematical Society, 298(2) (1986), 671-711.
- [7] G. Böhm, F. Nill, K. Szlachányi, Weak Hopf algebras, I. Integral theory and C∗-structure, J. of Algebra, 221 (1999), 385-438.
- [8] G. Böhm, K. Szlachányi, Weak Hopf algebras, II. Representation theory, dimensions and the Markov trace, J. of Algebra, 233 (2000), 156-212.
- [9] G. Böhm, Doi-Hopf modules over weak Hopf algebras, Comm. in Algebra, 28 (2000), 4687-4698.
- [10] D. Bulacu, F. Panaite, F.V. Oystaeyen, Quasi-Hopf algebra actions and smash product, Comm. in Algebra, 28 (2000), 631-651.
- [11] D. Bulacu, E. Nauwelaerts, Radford’s biproduct for quasi-Hopf algebras and bosonization, J. Pure Appl. Algebra, 174 (2002), 1-42.
- [12] S. Caenepeel, D. Wang, Y. Yin, Yetter-Drinfeld modules over weak Hopf algebras and the center construction, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. 51 (2005), 69-98.
- [13] F. Goodman, P. de la Harpe, V.F.R. Jones, Coxeter graphs and towers of algebras, M.S.R.I. Publ. 14, Springer, Heilderberg, (1989).
- [14] T. Hayashi, Face algebras I. A generalization of quantum group theory. J. Math. Soc. Japan, 50, (1998), 293-315.
- [15] K. Kassel, Quantum groups, G.T.M. 155, Spinger Verlag, 1995.
- [16] S. Majid, Cross products by braided groups and bosonization, J. of Algebra, 163 (1994), 165-190.
- [17] S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys., 45 (19948), 1-9.
- [18] A. Nenciu, The center construction for weak Hopf algebras, Tsukuba J. of Math. 26 (2002), 189-204.
- [19] D. Nikshych, L. Vainerman, A Galois Correspondence for Π1 factors, math.QA/0001020 (2000).
- [20] D. Nikshych, L. Vainerman, Finite Quantum Groupoids and their applications, New Directions in Hopf Algebras, MSRI Publications, 43 (2002), 211-262.
- [21] D. Nikshych, V. Turaev and L. de Vainerman, Invariants of knots and 3-manifolds from quantum groupoids, Topology Appl., 127 (2003), 91-123.
- [22] F. Nill, Axioms of weak bialgebras, math.QA/9805104 (1998).
- [23] D.E. Radford, The structure of Hopf algebras with a projection, J. of Algebra, 92 (1985), 322-347.
- [24] J. Renault, A groupoid approach to C∗ -algebras, Lecture Notes in Math. 793, SpringerVerlag, 1980.
- [25] T. Yamanouchi, Duality for generalized Kac algebras and characterization of finite groupoid algebras, J. of Algebra, 163 (1994), 9-50.