Quantum groupoids with projection

  1. J.N. Alonso Alvarez 1
  2. J.M. Fernández Vilaboa 2
  3. R. González Rodríguez 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Book:
From lie algebras to quantum groups
  1. Helena Alburquerque (coord.)
  2. Samuel Lopes (coord.)
  3. Joana Teles (coord.)

Publisher: Centro Internacional de Matemática

ISBN: 978-989-95011-1-9

Year of publication: 2007

Pages: 151-174

Type: Book chapter

Abstract

In this survey we explain in detail how Radford’s ideas and results about Hopf algebraswith projection can be generalized to quantum groupoids in a strict symmetric monoidalcategory with split idempotents.

Bibliographic References

  • [1] J.N. Alonso Alvarez, R. González Rodríguez, J.M. Fernánde Vilaboa, M.P. López López, E. Villanueva Novoa, Weak Hopf algebras with projection and weak smash bialgebra structures, J. of Algebra, 269 (2003), 701-725.
  • [2] J.N. Alonso Alvarez, R. González Rodríguez, Crossed products for weak Hopf algebras with coalgebra splitting, J. of Algebra, 281 (2004), 731-752.
  • [3] Alonso Alvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Yetter-Drinfeld modules and projections of weak Hopf algebras, J. of Algebra (to appear), (2006).
  • [4] Alonso Alvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R., Weak Hopf algebras and weak Yang-Baxter operators, preprint (2006).
  • [5] Y. Bespalov, Crossed modules and quantum groups in braided categories, Appl. Categ. Struct. (2)5 (1997), 155-204.
  • [6] R. Blattner, M. Cohen and S. Montgomery, Crossed products and inner actions of Hopf algebras, Transactions of the American Mathematical Society, 298(2) (1986), 671-711.
  • [7] G. Böhm, F. Nill, K. Szlachányi, Weak Hopf algebras, I. Integral theory and C∗-structure, J. of Algebra, 221 (1999), 385-438.
  • [8] G. Böhm, K. Szlachányi, Weak Hopf algebras, II. Representation theory, dimensions and the Markov trace, J. of Algebra, 233 (2000), 156-212.
  • [9] G. Böhm, Doi-Hopf modules over weak Hopf algebras, Comm. in Algebra, 28 (2000), 4687-4698.
  • [10] D. Bulacu, F. Panaite, F.V. Oystaeyen, Quasi-Hopf algebra actions and smash product, Comm. in Algebra, 28 (2000), 631-651.
  • [11] D. Bulacu, E. Nauwelaerts, Radford’s biproduct for quasi-Hopf algebras and bosonization, J. Pure Appl. Algebra, 174 (2002), 1-42.
  • [12] S. Caenepeel, D. Wang, Y. Yin, Yetter-Drinfeld modules over weak Hopf algebras and the center construction, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. 51 (2005), 69-98.
  • [13] F. Goodman, P. de la Harpe, V.F.R. Jones, Coxeter graphs and towers of algebras, M.S.R.I. Publ. 14, Springer, Heilderberg, (1989).
  • [14] T. Hayashi, Face algebras I. A generalization of quantum group theory. J. Math. Soc. Japan, 50, (1998), 293-315.
  • [15] K. Kassel, Quantum groups, G.T.M. 155, Spinger Verlag, 1995.
  • [16] S. Majid, Cross products by braided groups and bosonization, J. of Algebra, 163 (1994), 165-190.
  • [17] S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys., 45 (19948), 1-9.
  • [18] A. Nenciu, The center construction for weak Hopf algebras, Tsukuba J. of Math. 26 (2002), 189-204.
  • [19] D. Nikshych, L. Vainerman, A Galois Correspondence for Π1 factors, math.QA/0001020 (2000).
  • [20] D. Nikshych, L. Vainerman, Finite Quantum Groupoids and their applications, New Directions in Hopf Algebras, MSRI Publications, 43 (2002), 211-262.
  • [21] D. Nikshych, V. Turaev and L. de Vainerman, Invariants of knots and 3-manifolds from quantum groupoids, Topology Appl., 127 (2003), 91-123.
  • [22] F. Nill, Axioms of weak bialgebras, math.QA/9805104 (1998).
  • [23] D.E. Radford, The structure of Hopf algebras with a projection, J. of Algebra, 92 (1985), 322-347.
  • [24] J. Renault, A groupoid approach to C∗ -algebras, Lecture Notes in Math. 793, SpringerVerlag, 1980.
  • [25] T. Yamanouchi, Duality for generalized Kac algebras and characterization of finite groupoid algebras, J. of Algebra, 163 (1994), 9-50.