Pyrene-4,5,9,10-Tetrachalcogenone Derivatives: A Computational Study on Their Potential Use as Materials for Batteries

  1. Vázquez-Tato, M. Pilar 3
  2. Meijide, Francisco 1
  3. Fraga, Francisco 2
  4. Vázquez Tato, José 1
  5. Seijas, Julio A. 3
  1. 1 Departamento de Química Física, Facultade de Ciencias, Universidade de Santiago de Compostela—Campus Terra, 27080 Lugo, Spain
  2. 2 Departamento de Física Aplicada, Facultade de Ciencias, Universidade de Santiago de Compostela—Campus Terra, 27080 Lugo, Spain
  3. 3 Departamento de Química Orgánica, Facultade de Ciencias, Universidade de Santiago de Compostela—Campus Terra, 27080 Lugo, Spain
Actas:
The 26th International Electronic Conference on Synthetic Organic Chemistry

Año de publicación: 2022

Tipo: Aportación congreso

DOI: 10.3390/ECSOC-26-13554 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Polycyclic aromatic hydrocarbons are versatile building blocks for conjugated materials and can be applied in molecular electronics. Pyrenes are known as the best organic chromophores, and pyrene itself is known as an electron donor. Likewise, quinones are promising electrode materials for lithium-ion batteries. The calculations were performed for pyrene-4,5,9,10-tetrathione, pyrene-4,5,9,10-tetraselenone and pyrene-4,5,9,10-tetratellurone, and the results were compared with those for pyrene-4,5,9,10-tetraone. The results obtained indicate that the sulfur derivative is a suitable candidate for further experimental studies since, although selenium and tellurium compounds present better prospects than 4,5,9,10-tetraoxopyrene, they require the improvement of available synthetic techniques or even the discovery of new ones.

Referencias bibliográficas

  • Miao, (2018), Phys. Chem. Chem. Phys., 20, pp. 13478, 10.1039/C8CP00597D
  • Armand, (2008), Nature, 451, pp. 652, 10.1038/451652a
  • Lyu, (2021), Adv. Energy Sustainability Res., 2, pp. 2000044, 10.1002/aesr.202000044
  • Zhu, (2014), J. Am. Chem. Soc., 136, pp. 16461, 10.1021/ja507852t
  • Zhang, (2020), Batter. Supercaps, 3, pp. 476, 10.1002/batt.202000038
  • Yoo, (2020), Cellulose, 27, pp. 6707, 10.1007/s10570-020-03266-8
  • Shi, (2021), Phys. Chem. Chem. Phys., 23, pp. 13159, 10.1039/D1CP01645H
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., and Nakatsuji, H. (2016). Gaussian 16, Revision C.01, Gaussian, Inc.
  • Wang, (2020), ACS Sustain. Chem. Eng., 8, pp. 11046, 10.1021/acssuschemeng.0c02884
  • Wang, (2019), Org. Electron., 64, pp. 216, 10.1016/j.orgel.2018.10.038
  • Shoaib, (2021), Z. Phys. Chem., 235, pp. 427, 10.1515/zpch-2019-1451
  • Ji, (2017), Phys. Chem. Chem. Phys., 19, pp. 13978, 10.1039/C7CP01114H
  • Evans, (2008), Chem. Rev., 108, pp. 2113, 10.1021/cr068066l
  • (2022, October 17). Organic Chemistry Portal. Available online: https://www.organic-chemistry.org/synthesis/C2S/thioketones.shtm.