An Application of Power Indices for the Family of Weighted Majority Games in Partition Function Form

  1. Alonso-Meijide, J. M. 23
  2. Armijos-Toro, L. M. 24
  3. Casas-Méndez, B. 24
  4. Mosquera, M. A. 12
  1. 1 Universidade de Vigo, Departamento de Estatística e Investigación Operativa, 32004, Ourense, Spain
  2. 2 CITMAga, 15782, Santiago de Compostela, Coruna, Spain
  3. 3 MODESTYA Research Group, Department of Statistics, Mathematical Analysis and Optimisation, Faculty of Sciences, University of Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
  4. 4 MODESTYA Research Group, Department of Statistics, Mathematical Analysis and Optimisation, Faculty of Mathematics, University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Coruna, Spain
Book:
Power and Responsibility

ISBN: 9783031230141 9783031230158

Year of publication: 2023

Pages: 143-164

Type: Book chapter

DOI: 10.1007/978-3-031-23015-8_8 GOOGLE SCHOLAR lock_openOpen access editor

Abstract

Based on Holler (1982), Colomer and Martínez (1995), and Armijos-Toro et al. (2021), we propose two power indices to measure the influence of the players in these classes of weighted majority games in partition function form. We compare the new power indices with their original versions on the class of games in characteristic function form. Finally, we use both new power indices and the two power indices for games in partition function form studied in Alonso-Meijide et al. (2017) to study the distribution of power in the National Assembly of Ecuador that emerged after the elections of February 7, 2021.

Bibliographic References

  • Alonso-Meijide, J. M., Álvarez-Mozos, M., & Fiestras-Janeiro, M. G. (2017). Power indices and minimal winning coalitions for simple games in partition function form. Group Decision and Negotiation, 26, 1231–1245.
  • Álvarez-Mozos, M., & Tejada, O. (2015). The Banzhaf value in the presence of externalities. Social Choice and Welfare, 44, 781–805.
  • Álvarez-Mozos, M., Ferreira, F., Alonso-Meijide, J., & Pinto, A. (2015). Characterizations of power indices based on null player free winning coalitions. Optimization, 64, 675–686.
  • Álvarez-Mozos, M., Alonso-Meijide, J. M., & Fiestras-Janeiro, M. G. (2017). On the externality-free Shapley-Shubik index. Games and Economic Behavior, 105, 148–154.
  • Arévalo-Iglesias, G., & Álvarez-Mozos, M. (2020). Power distribution in the Basque Parliament using games with externalities. Theory and Decision, 89, 157–178.
  • Armijos-Toro, L. M., Alonso-Meijide, J. M., & Mosquera, M. A. (2021). Mergeable weighted majority games and characterizations of power indices. University of Santiago de Compostela.
  • Banzhaf, J. F. (1964). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19, 317–343.
  • Barua, R., Chakravarty, S. R., & Roy, S. (2005). Weighted voting doesn’t work: A mathematical analysis. Homo Oeconomicus, 22, 459–486.
  • Bolger, E. M. (1983). The Banzhaf index for multicandidate presidential elections. SIAM Journal of Algebraic Discrete Methods, 4, 422–458.
  • Bolger, E. M. (1990). A characterization of an extension of the Banzhaf value for multicandidate voting games. SIAM Journal of Discrete Mathematics, 3, 466–477.
  • Carreras, F., & Magaña, A. (2008). The Shapley-Shubik index for simple games with multiple alternatives. Annals of Operations Research, 158, 81–97.
  • Colomer, J. M., & Martínez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7, 41–63.
  • de Clippel, G., & Serrano, R. (2008). Marginal contributions and externalities in the value. Econometrica, 76, 1413–1436.
  • Deegan, J., & Packel, E. W. (1978). A new index of power for simple $$n$$-person games. International Journal of Game Theory, 7, 113–123.
  • Dutta, B., Ehlers, L., & Kar, A. (2010). Externalities, potential, value and consistency. Journal of Economic Theory, 145, 2380–2411.
  • Holler, M. J. (1982). Forming coalitions and measuring voting power. Political Studies, 30, 262–271.
  • Holler, M. J., & Packel, E. W. (1983). Power, luck and the right index. Journal of Economics, 43, 21–29.
  • Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10, 907–914.
  • Myerson, R. B. (1977). Values of games in partition function form. International Journal of Game Theory, 6, 23–31.
  • Shapley, L. S. (1953). A value for $$n$$-person games. In A. W. Tucker (Ed.), Contributions to the Theory of Games II (pp. 307–317). Princeton University Press.
  • Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48, 787–792.
  • Thrall, R. M., & Lucas, W. F. (1963). $$n$$-Person games in partition function form. Naval Research Logistics Quarterly, 10, 281–298.
  • van den Brink, R., Dimitrov, D., & Rusinowska, A. (2021). Winning coalitions in plurality voting democracies. Social Choice and Welfare, 56, 509–330.
  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.