A modification of the Cross-Industry Location Quotient for Projecting Sub-Territorial Input-Output Tables

  1. Napoleón Sanchez Choez 1
  2. Xesús Pereira López 1
  3. Melchor Fernández Fernández 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Journal:
Revista de economía mundial

ISSN: 1576-0162

Year of publication: 2022

Issue: 62

Pages: 25-50

Type: Article

DOI: 10.33776/REM.VI62.5130 DIALNET GOOGLE SCHOLAR lock_openArias Montano editor

More publications in: Revista de economía mundial

Metrics

Cited by

  • Dimensions Cited by: 0 (30-03-2023)

JCR (Journal Impact Factor)

  • Year 2022
  • Journal Impact Factor: 0.5
  • Journal Impact Factor without self cites: 0.4
  • Article influence score: 0.153
  • Best Quartile: Q4
  • Area: ECONOMICS Quartile: Q4 Rank in area: 360/380 (Ranking edition: SSCI)

SCImago Journal Rank

  • Year 2022
  • SJR Journal Impact: 0.253
  • Best Quartile: Q1
  • Area: History Quartile: Q1 Rank in area: 251/1572
  • Area: Political Science and International Relations Quartile: Q2 Rank in area: 300/616
  • Area: Economics and Econometrics Quartile: Q3 Rank in area: 489/720
  • Area: Social Sciences (miscellaneous) Quartile: Q3 Rank in area: 358/694
  • Area: Transportation Quartile: Q3 Rank in area: 91/121
  • Area: Geography, Planning and Development Quartile: Q3 Rank in area: 480/785

Índice Dialnet de Revistas

(Indicator corresponding to the last year available on this portal, year 2021)
  • Year 2021
  • Journal Impact: 0.410
  • Field: ECONOMÍA Quartile: C1 Rank in field: 35/163

CIRC

  • Social Sciences: B
  • Human Sciences: A

Scopus CiteScore

  • Year 2022
  • CiteScore of the Journal : 0.9
  • Area: History Percentile: 83
  • Area: Political Science and International Relations Percentile: 42
  • Area: Social Sciences (miscellaneous) Percentile: 41
  • Area: Geography, Planning and Development Percentile: 25
  • Area: Economics and Econometrics Percentile: 19
  • Area: Transportation Percentile: 11

Journal Citation Indicator (JCI)

  • Year 2022
  • Journal Citation Indicator (JCI): 0.12
  • Best Quartile: Q4
  • Area: ECONOMICS Quartile: Q4 Rank in area: 527/581

Dimensions

(Data updated as of 30-03-2023)
  • Total citations: 0
  • Recent citations: 0

Abstract

Economic accounts at sub-territorial level are projected primarily through Location Quotients (LQ). The degrees of sectoral specialisation at this level will therefore be key in spatial projections. This article advocates rectified use of the Cross-Industry Location Quotient (CILQ). Indirectly, the aim is to check to what extent CILQs are well exploited, given that they are the fundamental reference in other techniques. The input-output (IO) tables for the Euro 19 Area for 2010 and 2015 are taken as a reference for analysis purposes. A statistic is used to measure the degree of similarity between the accounting frameworks of ten countries in the Euro Area and their projections using CILQ, Flegg's formula, its augmented version, and the CILQ variant.

Bibliographic References

  • Bonfiglio, A. (2005). Can non-survey methods substitute for survey-based models? A performance analysis of indirect techniques of estimating IO coefficients and multipliers. In Quaderno di ricerca number 230. Ancona: Dipartimento di Scienze Economiche e Sociali, Universita’ Politecnica delle Marche.
  • Bonfiglio, A., & Chelli, F. (2008). Assessing the behaviour of non-survey methods for constructing regional input-output tables through a Monte Carlo simulation. Economic Systems Research, 20(3), 243–258. https://doi.org/10.1080/09535310802344315
  • Flegg, A. T., Mastronardi, L. J., & Romero, C. A. (2016). Evaluating the FLQ and AFLQ formulae for estimating regional input coefficients: Empirical evidence for the province of Córdoba, Argentina. Economic Systems Research, 28(1), 21–37. https://doi.org/10.1080/09535314.2015.1103703
  • Flegg, A. T., & Tohmo, T. (2013a). A Comment on Tobias Kronenberg’s “Construction of Regional Input-Output Tables Using Nonsurvey Methods: The Role of Cross-Hauling.” International Regional Science Review, 36(2), 235–257. https://doi.org/10.1177/0160017612446371
  • Flegg, A. T., & Tohmo, T. (2013b). Regional input-output tables and the FLQ formula: A case study of Finland. Regional Studies, 47(5), 703–721. https://doi.org/10.1080/00343404.2011.592138
  • Flegg, A. T., & Tohmo, T. (2016). Estimating regional input coefficients and multipliers: The use of FLQ is not a gamble. Regional Studies, 50(2), 310–325. https://doi.org/10.1080/00343404.2014.901499
  • Flegg, A. T., & Tohmo, T. (2019). The regionalization of national input-output tables: A study of South Korean regions. Papers in Regional Science, 98(2), 601–620. https://doi.org/10.1111/pirs.12364
  • Flegg, A. T., & Webber, C. D. (1997). On the appropriate use of location quotients in generating regional input-output tables: Reply. Regional Studies, 31(8), 795–805. https://doi.org/10.1080/713693401
  • Flegg, A. T., & Webber, C. D. (2000). Regional size, regional specialization and the FLQ formula. Regional Studies, 34(6), 563–569. https://doi.org/10.1080/00343400050085675
  • Flegg, A. T., Webber, C. D., & Elliott, M. V. (1995). On the appropriate use of location quotients in generating regional input-output tables. Regional Studies, 29(6), 547–561. https://doi.org/10.1080/00343409512331349173
  • Isard, W. (1953). Regional Commodity Balances and Interregional Commodity Flows. In Source: The American Economic Review (Vol. 43, Issue 2).
  • Jackson, R. W., & Murray, A. T. (2004). Alternative input-output matrix updating formulations. Economic Systems Research, 16(2), 135–148. https://doi.org/10.1080/0953531042000219268
  • Jahn, M., Flegg, A. T., & Tohmo, T. (2020). Testing and implementing a new approach to estimating interregional output multipliers using input-output data for South Korean regions. Spatial Economic Analysis, 00(0), 1–21. https://doi.org/10.1080/17421772.2020.1720918
  • Jalili, A. R. (2000). Comparison of two methods of identifying input-output coefficients for exogenous estimation. Economic Systems Research, 12(1), 113–129. https://doi.org/10.1080/095353100111317
  • Jensen, R. C., Mandeville, T. D., & Karunaratne, N. D. (2017). Regional Economic Planning: Generation of Regional Input-output Analysis. Routledge.
  • Kowalewksi, J. (2015). Regionalization of national input-output tables: Empirical evidence on the use of the FLQ formula. Regional Studies, 49(2), 240–250. https://doi.org/10.1080/00343404.2013.766318
  • Kronenberg, T. (2009). Construction of regional input-output tables using nonsurvey methods: The role of cross-hauling. International Regional Science Review, 32(1), 40–64. https://doi.org/10.1177/0160017608322555
  • Lahr, M. L., & Stevens, B. H. (2002). A study of the role of regionalization in the generation of aggregation error in regional input-output models. Journal of Regional Science, 42(3), 477–507. https://doi.org/10.1111/1467-9787.00268
  • Lamonica, G. R., & Chelli, F. M. (2018). The performance of non-survey techniques for constructing sub-territorial input-output tables. Papers in Regional Science, 97(4), 1169–1202. https://doi.org/10.1111/pirs.12297
  • Lamonica, G. R., Recchioni, M. C., Chelli, F. M., & Salvati, L. (2020). The efficiency of the cross-entropy method when estimating the technical coefficients of input-output tables. Spatial Economic Analysis, 15(1), 62–91. https://doi.org/10.1080/17421772.2019.1615634
  • Lampiris, G., Karelakis, C., & Loizou, E. (2019). Comparison of non-survey techniques for constructing regional input-output tables. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03337-5
  • Mahajan, S., Beutel, J., Guerrero, S., Inomata, S., Larsen, S., Moyer, B., ... & Rompaey, C. V. (2018). Handbook on supply, use and input-output tables with extensions and applications. United Nations, No. halshs-01876674.
  • McCann, P., & Dewhurst, J. H. L. (1998). Regional size, industrial location and input-output expenditure coefficients. Regional Studies, 32(5), 435–444. https://doi.org/10.1080/00343409850116835
  • Miller, R. E., & Blair, P. D. (2009). Input-output analysis: Fundations and extensions (2nd ed.). Cambridge University Press.
  • Mínguez, R., Oosterhaven, J., & Escobedo, F. (2009). Cell-corrected RAS method (CRAS) for updating or regionalizing an input-output matrix. Journal of Regional Science, 49(2), 329–348. https://doi.org/10.1111/j.1467-9787.2008.00594.x
  • Morrison, W. I., & Smith, P. (1974). Non-survey input-output techniques at the small area level: An evaluation. Journal of Regional Science, 14(1), 1–14. https://doi.org/10.1111/j.1467-9787.1974.tb00425.x
  • Oosterhaven, J., van der Knijff, E. C., & Eding, G. J. (2003). Estimating interregional economic impacts: An evaluation of nonsurvey, semisurvey, and full-survey methods. Environment and Planning A: Economy and Space, 35(1), 5–18. https://doi.org/10.1068/a3569
  • Pereira-López, X., Carrascal-Incera, A., & Fernández-Fernández, M. (2020). A bidimensional reformulation of location quotients for generating input-output tables. Spatial Economic Analysis, 15(4), 476–493. https://doi.org/10.1080/17421772.2020.1729996
  • Schaffer, W. A., & Chu, K. (1969). Non-survey techniques for constructing regional interindustry models. Papers of the Regional Science Association, 23, 83–101. https://doi.org/https://doi.org/10.1007/BF01941876
  • Towa, E., Zeller, V., Merciai, S., Schmidt, J., & Achten, W. M. J. (2020). Toward the development of subnational hybrid input–output tables in a multiregional framework. Journal of Industrial Ecology, 1–19. https://doi.org/10.1111/jiec.13085
  • Wiebe, K. S., & Lenzen, M. (2016). To RAS or not to RAS? What is the difference in outcomes in multi-regional input-output models? Economic Systems Research, 28(3), 383–402. https://doi.org/10.1080/09535314.2016.1192528
  • Zhao, X., & Choi, S. G. (2015). On the regionalization of input-output tables with an industry-specific location quotient. Annals of Regional Science, 54(3), 901–926. https://doi.org/10.1007/s00168-015-0693-x