Qualitative Investigation of Nonlinear Fractional Coupled Pantograph Impulsive Differential Equations

  1. Kamal Shah 1
  2. Israr Ahmad
  3. Juan J. Nieto 2
  4. Ghaus Ur Rahman 3
  5. Thabet Abdeljawad 4
  1. 1 Prince Sultan University & University of Malakand
  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  3. 3 University of Swat (Pakistan)
  4. 4 China Medical University
    info

    China Medical University

    Taichung, Taiwán

    ROR https://ror.org/00v408z34

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Ano de publicación: 2022

Volume: 21

Número: 4

Tipo: Artigo

Outras publicacións en: Qualitative theory of dynamical systems

Resumo

In this manuscript a qualitative analysis to a nonlinear coupled system of pantograph impulsive fractional differential equations (PIFDEs) is established. By the use of Banach and Krasnoselskii’s fixed-point theorems some adequate conditions for the existence and uniqueness of solution to the considered problem are developed. The advantage of using Krasnoselskii’s fixed-point theorem is that it uses slight relax compact conditions as compared to other fixed point results. Furthermore, the manuscript is enriched by adding some results about Ulam–Hyers type stability. Finally, with the help of pertinent examples, the obtained theoretical results are justified.

Referencias bibliográficas

  • 1. Ercan, A., Kavvas, M.L.: Numerical evaluation of fractional vertical soil water flow equations. Water 2021(13), 511 (2021)
  • 2. Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. 335(6), 1077–1086 (1998)
  • 3. Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Cal. Appl. Anal. 19(5), 1200–1221 (2016)
  • 4. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. ArXiv:math/0110241 (2001)
  • 5. Tarasov, V.E.: Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundamenta Informaticae 151(1–4), 431–442 (2017)
  • 6. Hilfer, R.: Mathematical and Physical Interpretations of Fractional Derivatives and Integrals. Handbook of Fractional Calculus with Applications 1, 47–85 (2019)
  • 7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
  • 8. Ortigueira, M.D., Machado, J.T.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)
  • 9. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021–1032 (2010)
  • 10. Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems with nonlinear fractional differential equations. Appl. Anal. 87, 851–863 (2010)
  • 11. Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative. Adv. Differ. Equ. 2009, 1–47 (2009)
  • 12. Wang, G., Liu, S., Baleanu, D., Zhang, L.: A new impulsive multi-orders fractional differential equation involving multipoint fractional integral boundary conditions. Abstr. Appl. Anal. 2014, 932747, 10 (2014)
  • 13. Balachandran, K., Kiruthika, S., Trujillo, J.: Existence of solutions of nonlinear fractional pantograph equations. Acta Mathematica Scientia 33(3), 712–720 (2013)
  • 14. Yukunthorn, W., Ntouyas, S.K., Tariboon, J.: Impulsive multiorders Riemann–Liouville fractional differential equations. Discret. Dyn. Nat. Soc. Article ID 603893, 9 (2015)
  • 15. Benchohra, M., Bouriah, S., Nieto, J.J.: Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative. Demonstr. Math. 52(1), 437–450 (2019)
  • 16. Lakshmikanthan, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
  • 17. Chernousko, F., Akulenko, L., Sokolov, B.: Control of Oscillations. Nauka, Moskow (1980)
  • 18. Bainov, D., Dimitrova, M., Dishliev, A.: Oscillation of the bounded solutions of impulsive differentialdifference equations of second order. Appl. Math. Comput. 114(1), 61–68 (2000)
  • 19. Chua, L., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. CAS 35, 1273– 1290 (1988)
  • 20. Babitskii, V., Krupenin, V.: Vibration in Strongly Nonlinear Systems. Nauka, Moskow (1985)
  • 21. Andronov, A., Witt, A., Haykin, S.: Oscilation Theory. Nauka, Moskow (1981)
  • 22. Popov, E.: The Dynamics of Automatic Control Systems. Gostehizdat, Moskow (1964)
  • 23. Zavalishchin, S., Sesekin, A.: Impulsive Processes: Models and Applications. Nauka, Moskow (1991)
  • 24. Hale, J.K., Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (2013)
  • 25. Ockendon, J.R., Taylor, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R Soc. Lond. Ser. A 322, 447–468 (1971)
  • 26. Rossetti, M., Bardella, P., Montrosset, I.: Modeling passive mode-locking in quantum dot lasers: a comparison between a finite-difference traveling-wave model and a delayed differential equation approach. IEEE J. Quant. Electron. 47(5), 569–576 (2011)
  • 27. Hofer, P., Lion, A.: Modelling of frequency- and amplitude-dependent material properties of fillerreinforced rubber. J. Mech. Phys. Solids 57, 500–520 (2009)
  • 28. Sedaghat, S., Ordokhani, Y., Dehghan, M.: Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonl. Sci. Numer. Simul. 17(12), 4815–4830 (2012)
  • 29. Iqbal, M., Shah, K., Khan, R.A.: On using coupled fixed point theorems for mild solutions to coupled system of multi-point boundary value problems of nonlinear fractional hybrid pantograph differential equations. Math. Meth. Appl. Sci. 44, 1–14 (2019)
  • 30. Griebel, T.: The pantograph equation in quantum calculus. Missouri University of Science and Technology (2017)
  • 31. Hyers, D.H.: On the stability of the linear functional equations. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)
  • 32. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience Publishers, New York (1960)
  • 33. Jung, S.M.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17(10), 1135–1140 (2004)
  • 34. Zada, A., Ali, W.: Choonkil, Ulam type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. Appl. Math. Comput. 350, 60–65 (2019)
  • 35. Wang, J., Lv, L., Zhou, W.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 63, 1–10 (2011)
  • 36. Kate, T., McLeod, J.B.: The functional-differential equation y (x) = ay(λx)+by(x). Bull. Am. Math. Soc. 77(6), 891–937 (1971)
  • 37. Urs, C.: Coupled fixed point theorem and applications to periodic boundary value problem. Miskolc. Math. Notes 14(1), 323–333 (2013)
  • 38. Ray, S.S., Atangana, A., Noutchie, S.C., Kurulay, M., Bildik, N., Kilicman, A.: Fractional calculus and its applications in applied mathematics and other sciences. Mathematical Problems in Engineering, Article ID 849395, 2 (2014). https://doi.org/10.1155/2014/849395
  • 39. Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii’s type. Math. Nachr. 189, 23–31 (1998)
  • 40. Bainov, D.D., Simenonv, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, Harlow (1993)
  • 41. Jackson, D.: Existence and uniqueness of solutions of a semilinear nonlocal parabolic equations. J. Math. Anal. Appl. 172, 256–265 (1993)
  • 42. Yang, L., Chen, H.: Nonlocal boundary value problem for impulsive differential equations of fractional order. Adv. Differ. Equ. Article ID 404917, 14 (2011)
  • 43. Guo, T., Wei, J.: Impulsive problems for fractional differential equations with boundary value conditions. Comput. Math. Appl. 64(10), 3281–3291 (2012)