On the Interplay Between T c -Inhomogeneities at Long Length Scales and Thermal Fluctuations Around the Average Superconducting Transition in Cuprates

  1. Vidal, Félix
  2. Veira, José Antonio
  3. Maza, Jesús
  4. Mosqueira, Jesús
  5. Carballeira, Carlos
Libro:
High-Tc Superconductors and Related Materials

ISBN: 9780792368731 9789401007580

Ano de publicación: 2001

Páxinas: 289-322

Tipo: Capítulo de libro

DOI: 10.1007/978-94-010-0758-0_16 GOOGLE SCHOLAR lock_openAcceso aberto editor

Referencias bibliográficas

  • J.M. Kosterlitz and D. Thouless, in Progress in Low Temperature Physics Edited by D.F. Brewer (North-Holland, Amsterdam, 1978)Vol. VIIB, p. 271.
  • J.G. Bednorz and K.A. Müller,Z. Phys. B Condensed Matter 64 189 (1986).
  • For a recent review of the thermal fluctuation effects of Cooper pairs above Tc in HTSC, see, e.g., F. Vidal and M.V. Ramallo, in The Gap Symmetry and Fluctuations in High Temperature Superconductors, Edited by J. Bok, G. Deutscher, D. Pavuna and A. Wolf (Plenum, London 1998), p. 477.
  • See, e.g., D. Shoenberg,Superconductivity(Cambridge University Press, Cambridge, 1962), p. 75. See also, L.R. Testardi Phys. Lett.35A 33 (1971).
  • See, e.g., B. Abeles, R.W. Cohen and G.W. Walker, Phys. Rev. Lett. 17 632 (1996); B. Abeles, R.W. Cohen and W.R. Stowell, Phys. Rev. Lett. 18 902 (1967).
  • J. Maza and F. Vidal,Phys. Rev. B 43 10560 (1991).
  • A. Pomar, M.V. Ramallo, J. Mosqueira, C. Torrón and F. Vidal, Phys. Rev. B 54 7470 (1996)
  • J. Low Temp. Phys. 105 675 (1996).
  • See, e.g., R. Landauer, in Electrical Transport and Optical Properties of Inhomogeneous Media, Edited by J.C. Garland and D.B. Tanner (AIP, New York, 1978), p. 2.
  • M.V. Ramallo, A. Pomar and F. Vidal,Phys. Rev. B 54 4341 (1996).
  • S. Ullah and A.T. Dorsey,Phys. Rev. B44 262 (1991)
  • See, e.g., C.M. Fu, W. Boon, Y.S. Wang, V.V. Moshchalkov and Y. Bruynseraede, Physica C 200 17 (1992)
  • V. Calzona, M.R. Cimberle, C. Ferdeghini, G. Grasso, D.V. Livanov, D. Marre, M. Putti, A.S. Siri, G. Balestrino and E. Milani, Solid State Commun.87 397 (1993)
  • A.K. Prandam, S.B. Ray, P.C. Chaddah, C. Chen, and B.M. Wanklyn, Phys. Rev. B50 7180 (1994).
  • For earlier references on the anomalous peak structure of the specific heat around Tc in HTSC see, e.g., A. Junod, inPhysical Properties of High Temperature Superconductors IIed. D.M. Ginsberg (World Scientific, Singapore, 1990), p. 13.
  • See, e.g., C.H. Chen, in Physical Properties of High Temperature Superconductors II, ed. D.M. Ginsberg (World Scientific, Singapore, 1990), p. 261.
  • H. Claus, U. Gebhard, G. Linker, K. Rohberg. S. Riedling, J. Franz, T. Ishida, A. Erb, G. Müller-Vogt and H. Wühl,Physica C200271 (1992).
  • E. Janod, A. Junod, T. Graf, K.W. Wang, G. Triscone and J. Muller,Physica B194–1961939 (1994).
  • Y. Nakawaza, J. Takeya and M. Ishikawa,Physica C 22571 (1994).
  • J.W. Loran, J.R. Cooper and K.A. Mirza,Supercond. Sci. Technol. 4S391 (1991).
  • R. Menegotto Costa, A.R. Jurelo, P. Rodrigues Jr., P. Pureur, J. Schaf, J.V. Kunzler, L. Ghuvelder, J.A. Campá and I. Rasines,Physica C251175 (1995).
  • J.A. Friedmann, J.P. Rice, J. Giapintzakis and D.M. Ginsberg,Phys. Rev. B 39 4258 (1989).
  • A. Pomar, S.R. Currás, J.A. Veira, and F. Vidal,Phys. Rev. B538245 (1996).
  • A. Pomar, A. Diaz, M.V. Ramallo, C. Torrón, J.A. Veira and F. Vidal,Physica C218257 (1993).
  • See, e.g., J.P. Rice and D.M. Ginsberg, Phys. Rev. B461206 (1992), and references therein.
  • Such a link was established by the authors of Refs. 6 and 7 just by analogy with that proposed by some authors for the heavy fermion superconductor UPt3. See, e.g., R.A. Fisher, S. Kim, B.F. Woodfield, N.E. Phillips, L. Taifeller, K. Hasselbach, J. Flouquet, A.L. Giogi and J.L. Smith, Phys. Rev. Lett.621411 (1989).
  • In contrast, the absence of indirect order parameter fluctuation effects on p(T) above T c may provide some indications about the wave pairing state in the HTSC. For the theory see, e.g., S.K. Yip, Phys. Rev. B41 2012 (1990)
  • J. Low Temp. Phys.81129 (1990). The first experimental evidence of the absence of indirect OPF effects on the paraconductivity in HTSC, suggesting then unconventional (non 1-s0) pair breaking wave pairing in these superconductors, was presented by J.A. Veira and F. Vidal, Phys. Rev. B428748 (1990). For more recent developments on this subject see, e.g., A. Pomar. M.V. Ramallo, J. Maza and F. Vidal, Physica C225287 (1994).
  • J. Mosqueira, A. Pomar, A. Diaz, J.A. Veira, and F. Vidal, Physica C22534 (1994)
  • J. Mosqueira, A. Pomar, J.A. Veira, J. Maza and F. Vidal, J. App. Phys.761943 (1994).
  • J. Mosqueira, J.A. Veira and F. Vidal, Physica C229301 (1994)
  • J. Mosqueira, J.A. Veira, J. Maza, O. Cabeza and F. Vidal, Physica C2531(1995).
  • Th. Siebold, C. Carballeira, J. Mosqueira, M.V. Ramallo and F. Vidal, Physica C282-2871181 (1997)
  • J. Mosqueira, Th. Siebold, A. Pomar, A. Diaz, J.A. Veira, J. Maza and F. Vidal, Cryogenics37563 (1997). A negative voltage has also been observed by other groups in other HTSC. See, e.g., S. Aukkaravittayapum et al. Physica C270231 (1996)
  • Y. Nishi et al. J. Matter Sci. Lett.3523 (1989).
  • J. Mosqueira, S.R. Currás, C. Carballeira, M.V. Ramallo, Th. Siebold, C. Torrón, J. Campá, I. Rasines and F. Vidal,Supercond. Sci. Techol. 11, 1(1998).
  • See, e. g., P. Lindqvist, A. Nordstrom and Ö. Rapp, Phys. Rev. Lett.64 2941 (1990); P. Santhanam, C.C. Chi, S.J. Wind, M.J. Brady and J.J. Buchignano, ibid.66 2254 (1991); E. Spahn and K. Keck, Solid State Commun.78 69 (1991); Y. K. Kwong, K. Lin, P.J. Hakonen, M.S. Isaacson and J.M. Parpia, Phys. Rev.B 44462 (1991); A. Nordström and O. Rapp, Phys. Rev. B 4512577 (1992); H. Vloeberghs, V. V. Moshchalkov, C. Van Haesendonk, R. Jonckheere and Y. Bruynseraede, Phys. Rev. Lett.69 1268 (1992); A. W. Kleinsasser and A. Kastalsky, Phys. Rev. B47 8361 (1993); S.G. Romanov, A.V. Fokin and K.Kh. Babamuratov, JETP Lett. 58824 (1993); J.J. Kim, J. Kim, H.J. Shin, H.J. Lee, S. Lee, K.W. Park and E. Lee, J. Phys. Condens. Matter6 7055 (1994); V. V. Moshchalkov, L. Gielen, G. Neuttiens, C. van Haesendonk and Y. Bruynseraede, Phys. Rev. B49 15412 (1994); M. Park, M.S. Isaacson and J.M. Parpia, Phys. Rev. Lett.753740 (1995); C. Strunk, V. Bruyndoncx, C. Van Haesendonk, V.V. Moshchalkov, Y. Bruynseraede, B. Burk, C.J. Chien and V. Chandrasekhar, Phys. Rev. B5311332 (1996); K. Yu. Arutyunov, Phys. Rev. B5312304 (1996); M. Park, M.S. Isaacson and J.M. Parpia, Phys. Rev. B559067 (1997); B. Burk, C.-J. Chien, V. Chandrasekhar, C. Strunk, V. Bruyndoncx, C. Van Haesendonck, V.V. Moshchalkov, and Y. Bruynseraede, J. Appl. Phys.831549 (1998); C. Strunk, V. Bruyndoncx, C. Van Haesendonck, V.V. Moshchalkov, Y. Bruynseraede, C.-J. Chien, B. Burk, and V. Chandrasekhar, Phys. Rev. B5710854 (1998). As stressed in the main text, many of the magnetoresistivity peak effects around Tc described in these papers and attributed by these authors to sophisticated intrinsic mechanisms, may be easily explained in terms of Tc inhomogeneities non-uniformly distributed in the samples. This last explanation was discarded by some of these authors due to the erroneous belief that these Tc inhomogeneities do not affect the magnetoresistivity measured with in-line electrical arrangements (see Ref. 25; see also the note in Ref. 30).
  • R. Vaglio, C. Attanasio, L. Maritato and A. Ruosi, Phys. Rev. B4715302 (1993). In that paper it was concluded that the p (T) peaks observed near Tc in some low temperature superconductors by using a Van der Paw electrical arrangement (with the electrical leads in the sample corners) could be due to the presence in the samples of Tc inhomogeneities. However, it was erroneously suggested in that paper that in the case of an in-line electrical arrangement the Tc inhomogeneities could not produce a p (T) peak. This last type of measurements were analyzed for the first time by Mosqueira and coworkers in Ref. 25.
  • C. Attanasio, L. Maritato and R. Vaglio in Tunneling Phenomena in High and Low T c Superconductors, edited by A. de Chiara and M. Russo (World Scientific, Singapore, 1993).
  • A. Gerber, T. Grenet, M. Cyrot and B. Beille, Phys. Rev. Lett.653201 (1990)
  • L. Fabrega, M.A. Crusellas, J. Fontcuberta, X. Obradors, S. Piñol, C.J. van der Beck, P.H. Kes, T. Grenet and J. Beille, Physica C185-189 1913 (1991)
  • M. A. Crusellas, J. Fontcuberta and S. Piñol, Phys. Rev. B4614089 (1992)
  • M.L. Trawick, S.M. Ammirata, C.D. Keener, S.E. Hebboul and J.C. Garland, J. of Low Temp. Phys.1051267 (1996).
  • S. Rubin, T. Schimpfke, B. Weitzel, C. Vossloh and H. Micklitz,Ann. Physik1 492 (1992).
  • A.K. Pradham, S.J. Hazell, J.W. Hodby, C. Chen, A.J.S. Chowdury and B.M. Wanklyn,Solid State Commun.88723 (1993).
  • M.A. Crusellas, J. Fontcuberta and S. Piñol,Physica C226311 (1994).
  • H.J. Trodahl and A. Mawdsley, Phys. Rev. B368881 (1987); W.N. Kang, K.C. Cho, Y.M. Kim and M.Y. Choi, Phys. Rev. B392763 (1989); S. Yan, T. Chen, H. Zhang, J. Peng, Z. Shen, C. Wei, Q. Wen, K. Wu, L. Tong and H. Zhang, Modern Phys. Lett. B21005 (1988); M.A. Howson, M.B. Salamon, T.A. Friedmann, S.E. Inderhees, J.P. Rice, D.M. Ginsberg and K.M. Ghiron, J. Phys.: Condens Matter1465 (1989); M.A. Howson, M.B. Salamon, T.A. Friedmann, J. P. Rice and D. Ginsberg, Phys. Rev. B41300 (1990); A.J. Lowe, S. Regan and M.A. Howson, Physica B165–1661369 (1990); Phys. Rev. B449757 (1991); J. Phys.: Condens. Matter48843 (1992); N.V. Zavaritskii, A.V. Samoilov and A.A. Yurgens, JETP Lett.55127 (1992); Y.N. Xiang, O.G. Shevchenko, and A.S. Panfilov, Sov. J. Low Temp. Phys.18916 (1992).
  • A.J. Lowe, S. Regan and M.A. Howson,Phys. Rev. B 47, 15321 (1993); M.A. Howson, ibid. 15324 (1993); A.A.Varlamov and D.L. Livanov, Soy. Phys. JETP 71, 325 (1990); A.V. Rapoport, Sov. Phys. Solid State33309 (1991).
  • For a more recent theoretical analyses of the thermal fluctuation effects on S(T) around Tc in HTSC see, A.A. Varlamov, G. Balestrino, E. Milani and D.V. Livanov (to be published).
  • Let us stress, however, that in this case (which corresponds to a typical non-uniformly distributed inhomogeneity) the behaviour of the calculated (th)ábdoes not depend on the number of meshes of the network, provided that the proportion and location of the different resistances is kept unchanged. This contrasts with the case of uniformly distributed Tc inhomogeneities for which with a small number of meshes it is not possible to represent adequately the inhomogeneity distribution. In this case, a small number of meshes could lead to the appearance of important spurious longitudinal and transversal voltages, which are just an artifact of an inadequate simulation. For instance, the calculations of the longitudinal and transversal voltages in superconductors with uniformly distributed inhomogeneities presented by R. Griessen and coworkers in Physica C235–2401371 (1994) may be affected by these spurious effects.
  • A negative Hall effect in a LTSC has been first observed by H. van Beelen et al., Physica36241 (1967), and by C.H. Weijsenfeld, Phys. Lett.28A362 (1968)
  • a negative Ettinshausen effect in a LTSC has been first observed by F. Vidal, Phys. Rev B81982 (1973).
  • See, e.g., S.J. Hagen, A.W. Smith, M. Rajeswari, J.L. Peng, Z.Y. Li, R.L. Greene, S.N. Mao, X.X. Xi, S. Bhattacharya, Q. Li, and C.J. Lobb,Phys. Rev. B471064 (1993).
  • O. Cabeza, A. Pomar, A. Díaz, C. Torrón, J.A. Veira, J. Maza and F. Vidal, Phys. Rev. B475332 (1993)
  • A.J. López, J. Maza, Y.P. Yadava, F. Vidal, F. García Alvarado, E. Morán and M.A. Sellaris-Rodriguez, Supercond. Sci. Technol.4S292 (1991).
  • K. Maki, J. Low. Temp. Phys.14419 (1974); Phys. Rev. B431252 (1991).
  • J.A. Veira and F. Vidal, Physica C159468 (1989)
  • C. Torrón, O. Cabeza, A. Díaz, J. Maza, A. Pomar, J.A. Veira and F. Vidal, J. of Alloys and Compounds195627 (1993).
  • O. Cabeza, G. Domarco, J.A. Veira, A. Pomar, C. Torrón, A. Díaz, J. Maza and F. Vidal, J. Alloys and Compounds195623 (1993)
  • O. Cabeza, J. Maza, Y.P. Yadava, J.A. Veira, F. Vidal, M.T. Cascais, C. Cascales and I. Rasines, in Properties and Applications of Perovskite-type Oxides, Ed. L.G. Tejuca and J.L. Fierro (Marcel Dekker Inc. N.Y. 1992), p. 101.
  • See, e.g., A. Diaz, A. Pomar, G. Domarco, J. Maza and F. Vidal, App. Phys. Lett.631684 (1993); Physica B194–1961933 (1994); A. Díaz, A. Pomar, G. Domarco, C. Torrón, J. Maza and F. Vidal, Physica C215105 (1993); J. App. Phys. 77, 765 (1995).
  • K. Kadowaki, Physica C185–1892249 (1991).
  • P.H. Kes, C.J. van der Beck, M.P. Maley, M.E. McHenry, D.A. Huse, M.J.V. Menken and A.A. Menovsky,Phys. Rev. Lett.672383 (1991).
  • Z. Telanovic, L. Xing, L.N. Bulaevskii, Q. Li, and M. Suenaga,Phys. Rev. Lett.693563 (1992).
  • Q. Li, M. Suenaga, T. Hikata and K. Sato, Phys. Rev. B465857 (1992)
  • Q. Li, K. Shibutani, M. Suenaga, I. Shigaki, R. Ogawa, ibid.489877 (1993)
  • Q. Li, M. Suenaga, L.N. Bulaevskii, T. Hikata, K. Sato, ibid.4813865 (1993)
  • Q. Li, M. Suenaga, G.D. Gu, N. Koshizuka, ibid.506489 (1994)
  • J.R. Thompson, J.G. Ossandon, D.K. Christen, B.C. Chakoumakos, Yang Ren Sun, M. Paranthaman and J. Brynestad, ibid.4814031 (1993)
  • Z. J. Huang, Y.Y. Xue, R.L. Meng, X.D. Qiu, Z.D. Hao, and C.W. Chu, Physica C228211 (1994)
  • N. Kobayashi, K. Egawa, K. Miyoshi, H. Iwasaki, H. Ikeda, and R. Yoshizaki, ibid.219265 (1994)
  • R. Jin, H.R. Ott, and A. Schilling, ibid.228401 (1994)
  • G. Triscone, A.F. Khoder, C. Opagiste, J.-Y. Genoud, T. Graf, E. Janod, T. Tsukamoto, M. Couach, A. Junod, and J. Muller, ibid.224263 (1994)
  • A. Wahl, A. Maignan, C. Martin, V. Hardy, J. Provost, and Ch. Simon, Phys. Rev. B519123 (1995)
  • Y.Y. Xue, Y. Cao, Q. Xiong, F. Chen, and C.W. Chu, ibid.532815 (1996)
  • G. Villard, D. Pelloquin, A. Maignan, and A. Wahl, Physica C27811 (1997)
  • Q. Li, M. Suenaga, T. Kimura, and K. Kishio, Phys. Rev. B47 11384 (1993)
  • B. Janossy, L. Fruchter. I.A. Campbell, J. Sanchez, I. Tanaka, and H. Kojima, Solid State Commun.89433 (1994)
  • J.-Y. Genoud, G. Triscone, A. Junod, T. Tsukamoto, and J. Muller, Physica C242143 (1995)
  • A. Junod, J.Y. Genoud, G. Triscone, and T. Schneider, Physica C294115 (1998).
  • See, e.g., L.N. Bulaevskii, M. Ledvig and V.G. Kogan, Phys. Rev. Lett.683773 (1992)
  • A.E. Koshelev, Phys. Rev. B50506 (1994).
  • J. Mosqueira, J.A. Campá, A. Maignan, I. Rasines, A. Revcolevschi, C. Torrón, J.A. Veira, F. Vidal, Europhys. Lett.42461 (1998); F. Vidal, C. Torrón, M.V. Ramallo, J. Mosqueira, Superconducting and Related Oxides: Physics and Nanoengineering III, Ed. D. Pavuna and I. Bozovic, (SPIE Publ., Bellingham, USA), p. 32.
  • J. Mosqueira, M.V. Ramallo, A. Revcolevschi, C. Torrón, F. Vidal, Phys. Rev. B59(Feb. 1999)
  • C.J. Lobb,Phys. Rev. B363930 (1987).
  • See, e.g., P.C. Hohenberg and B.I. Halperin,Rev. Mod. Phys.49435 (1977).
  • F. Vidal, J.A. Veira, J. Maza, F. García-Alvarado, E. Morán, and M.A. Alano, J. Phys. C: Solid State Phys.21L599-L606 (1988)
  • J.A. Veira, J. Maza, F. Vidal, Phys. Lett. A131310 (1988)
  • F. Vidal, J.A. Veira, J. Maza, J.J. Ponte, J. Amador, C. Cascales, M.T. Casais, I. Rasines, Physica C156165 (1988).
  • F. Vidal, J.A. Veira, J. Maza, J.J. Ponte, F. García-Alvarado, E. Morán, J. Amador, C. Cascales, A. Castro, M.T. Casais and I. Rasines,Physica C156807 (1988).
  • . Let us stress that, obviously, the opposite procedure used since many years by some workers, which consist in the estimation of T’, by imposing a critical exponent in an almost arbitrary (in extent and location!) temperature region does not overcome at all these difficulties: If p(T) is smoothly rounded by uniformly distributed TT -inhomogeneities, it will be always possible to find successive and more or less extended c-regions where the critical exponents take different values (to within almost zero and -3 or -4) which decrease when approaching the apparentT c .
  • In spite of the earlier wamings, published in Refs. 26, 56 and 57, an appreciable number of papers were published since then by different groups (and still new papers are being published at present) which intend to conclude quantitatively on the paraconductivity full critical behaviour by just analyzing the temperature behaviour of the resistivity measured in different HTSC samples probably appreciably affected by uniformly(and maybe also by non uniformly)distributed Tcinhomogeneities. See, e.g., Menegotto Costa, P. Pureur, L. Ghivelder, J.A. Campá, and I. Rasines, Phys. Rev. B 5610836 (1997)
  • S.H. Han, Yu. Eltsev and O. Rapp, Phys. Rev.B 577510 (1998). See also the note in Ref. 58.
  • A. Pomar, A. Díaz, M.V. Ramallo, C. Torrón, J.A. Veira, and F. Vidal,Physica C218257 (1993).
  • C. Torrón, A. Díaz, A. Pomar, J.A. Veira and F. Vidal, Phys. Rev. B4913143 (1994)
  • M.V. Ramallo, C. Torrón and F. Vidal, Physica C23097 (1994).
  • W. Holm, Yu. Eltsev and O. Rapp, Phys. Rev. B5311992 (1995)
  • J.T. Kim, N. Goldenfel, J. Giapintzakis and D. Ginsberg, Phys. Rev. B56118 (1997).
  • See, e.g., M.V. Ramallo and F. Vidal, Phys. Rev.59(Feb. 1999).
  • For an analysis of the influence of the TT -inhomogeneities on the heat capacity measured very close to T’, in Y-123 crystals, see, F. Shanfy, J. Giapintzakis, D.M. Ginsberg, D.J. van Harlingen, Physica C161555 (1989).