Geometría de curvas degeneradas

  1. Angel Gimenez Pastor
unter der Leitung von:
  1. Pascual Lucas Saorín Doktorvater/Doktormutter

Universität der Verteidigung: Universidad de Murcia

Jahr der Verteidigung: 2002

Gericht:
  1. Luis María Hervella Torrón Präsident
  2. Eduardo García Río Sekretär
  3. Ángel Ferrández Izquierdo Vocal
  4. Manuel Barros Díaz Vocal
  5. Alfonso Romero Sarabia Vocal

Art: Dissertation

Teseo: 95519 DIALNET

Zusammenfassung

El propósito general de la Tesis es la realización de un estudio cuidadoso de la geometría de las curvas degeneradas contenidas en una variedad semi-riemanniana, haciendo especial hincapié cuando el espacio ambiente es de curvatura constante y teniendo en cuenta en todo momento los posibles nexos que pueda haber con otros problemas conocidos en el campo de la Geometría Diferencial. Una primera parte de la Memoria está destinada a obtener referencias de Frenet adecuadas para curvas degeneradas, a las que denominaremos referencias de Cartan, las cuales proporcionan invariantes geométricos (curvaturas de Cartan) que determinan unívocamente la curva y que nos permiten estudiar su geometria. A continuación se presentan ejemplos de curvas degeneradas, en particular, realizamos una clasificación completa de hélices degeneradas en los espacios modelo lorentzianos de dimensión 4 y obtenemos resultados de caracterización para hélices generalizadas nulas en el espacio de Lorentz-Minkowski. Por último, se aborda el estudio de la existencia y clasificación de curvas nulas que sean puntos críticos de funcionales definidos sobre el espacio de curvas nulas en espacios modelo, y cuyo lagrangiano involucre una función de las curvaturas de Cartan, obteniendo importantes avances en espacios de Lorentz-Minkowski de dimensión 3 y 4.