Identification and Mapping of Phosphorylated Isoforms of the Major Storage Protein of Potato Based on Two- Dimensional Electrophoresis

  1. Bernal, Javier
  2. López-Pedrouso, María 1
  3. Franco, Daniel
  4. Bravo, Susana
  5. García, Lucio
  6. Zapata, Carlos 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Buch:
Advances in Seed Biology

Datum der Publikation: 2017

Art: Buch-Kapitel

DOI: 10.5772/INTECHOPEN.70400 GOOGLE SCHOLAR lock_openOpen Access editor

Ziele für nachhaltige Entwicklung

Bibliographische Referenzen

  • Liu Y-W, Han C-H, Lee M-H, Hsu F-L, Hou W-C. Patatin, the tuber protein of potato (Solanum tuberosum L.) exhibits antioxidant activity in vitro. Journal of Agricultural and Food Chemistry. 2003;51:4389-4393. DOI: 10.1021/jf030016j
  • Racusen D. Lipid acyl hydrolase of patatin. Canadian Journal of Botany. 1984;62:1640-1644. DOI: 10.1139/b84-220
  • Shewry PR. Tuber storage proteins. Annals of Botany. 2003;91:755-769. DOI: 10.1093/aob/mcg084
  • de Souza Cândido E, Pinto MFS, Pelegrini PB, Lima TB, Silva ON, Pogue R. Plant storage proteins with antimicrobial activity: Novel insights into plant defense mechanisms. The FASEB Journal. 2011;25:3290-3305. DOI: 10.1096/fj.11-184291
  • Müntz K. Deposition of storage proteins. Plant Molecular Biology. 1998;38:77-99. DOI: 10.1023/A:1006020208380
  • Racusen D, Foote M. A major soluble glycoprotein of potato tubers. Journal of Food Biochemistry. 1980;4:43-52. DOI: 10.1111/j.1745-4514.1980.tb00876.x
  • Paiva E, Lister RM, Park WD. Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiology. 1983;71:161-168. DOI: 10.1104/pp.71.1.161
  • Agrawal GK, Thelen JJ. Large-scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Molecular & Cellular Proteomics. 2006;5:2044-2059. DOI: 10.1074/mcp.M600084-MCP200
  • Meyer LJ, Gao J, Xu D, Thelen JJ. Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiology. 2012;159:517-528. DOI: 10.1104/pp.111.191700
  • López-Pedrouso M, Alonso J, Zapata C. Evidence for phosphorylation of the major seed storage protein of the common bean and its phosphorylation-dependent degradation during germination. Plant Molecular Biology. 2014;84:415-428. DOI: 10.1007/s11103-013-0141-1
  • Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: Keys to the function of the versatile plant hormone ABA. Trends in Plant Science. 2007;12:343-351. DOI: 10.1016/j.tplants.2007.06.013
  • Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta B, Jeannette E. Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiology. 2008;148:1668-1680. DOI: 10.1104/pp.108.124594
  • Han C, Wang K, Yang P. Gel-based comparative phosphoproteomic analysis on rice during germination. Plant & Cell Physiology. 2014;55:1376-1394. DOI: 10.1093/pcp/pcu060
  • Irar S, Oliveira E, Pagès M, Goday A. Towards the identification of late-embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS. Proteomics. 2006;6:S175-S185. DOI: 10.1002/pmic.200500387
  • Wan L, Ross ARS, Yang J, Hegedus DD, Kermode AR. Phosphorylation of the 12 S globulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds. The Biochemical Journal. 2007;404:247-256. DOI: 10.1042/BJ20061569
  • Ganal MW, Bonierbale MW, Roeder MS, Park WD, Tanksley SD. Genetic and physical mapping of the patatin genes in potato and tomato. Molecular & General Genetics. 1991;225:501-509. DOI: 10.1007/BF00261693
  • Stupar RM, Beaubien A, Jin W, Song J, Lee M-K, Wu C, Zhang H-B, Han B, Jiang J. Structural diversity and differential transcription of the patatin multicopy gene family during potato tuber development. Genetics. 2006;172:1263-1275. DOI: 10.1534/genetics.105.051219
  • The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189-195. DOI: 10.1038/nature10158
  • Mignery GA, Pikaard CS, Hannapel DJ, Park WD. Isolation and sequence analysis of cDNAs for the major tuber protein, patatin. Nucleic Acids Research. 1984;12:7987-8000. DOI: 10.1093/nar/12.21.7987
  • Mignery GA, Pikaard CS, Park WD. Molecular characterization of the patatin multigene family of potato. Gene. 1988;62:27-44. DOI: 10.1016/0378-1119(88)90577-X
  • Park WD, Blackwood C, Mignery GA, Hermodson MA, Lister RM. Analysis of the heterogeneity of the 40,000 molecular weight tuber glycoprotein of potatoes by immunological methods and by NH2-terminal sequence analysis. Plant Physiology. 1983;71:156-160. DOI: 10.1104/pp.71.1.156
  • Pots AM, Gruppen H, Hessing M, van Boekel MAJS, Voragen AGJ. Isolation and characterization of patatin isoforms. Journal of Agricultural and Food Chemistry. 1999;47:4587-4592. DOI: 10.1021/jf981180n
  • Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HJ, Kärenlampi SO. Comparison of tuber proteomes of potato varieties landraces, and genetically modified lines. Plant Physiology. 2005;138:1690-1699. DOI: 10.1104/pp.105.060152
  • Bauw G, Nielsen HV, Emmersen J, Nielsen KL, JØrgensen M, Welinder KG. Patatin, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. The FEBS Journal. 2006;273:3569-3584. DOI: 10.1111/j.1742-4658.2006.05364.x
  • Bárta J, Bártová V, Zdráhal Z, Šedo O. Cultivar variability of patatin biochemical characteristics: Table versus processing potatoes (Solanum tuberosum L). Journal of Agricultural and Food Chemistry. 2012;60:4369-4378. DOI: 10.1021/jf3003448
  • Zhu K, Zhao J, Lubman DM. Protein pI shifts due to posttranslational modifications in the separation and characterization of proteins. Analytical Chemistry. 2005;77:2745-2755. DOI: 10.1021/ac048494w
  • Romero-Rodríguez MC, Abril N, Sánchez-Lucas R, Jorrín-Novo V. Multiplex staining of 2-DE gels for an initial phosphoproteome analysis of germinating seeds and early grown seedlings form a non-orthodox specie: Quercus ilex L. subsp. ballota [Desf.] Samp. Frontiers in Plant Science. 2015;6:620. DOI: 10.3389/fpls.2015.00620
  • Kuyama H, Toda C, Watanabe M, Tanaka K, Nishimura O. An efficient chemical method for dephosphorylation of phosphopeptides. Rapid Communications in Mass Spectrometry. 2003;17:1493-1496. DOI: 10.1002/rcm.1078
  • Kita K, Okumura N, Takao T, Watanabe M, Matsubara T, Nishimura O, Nagai K. Evidence for phosphorylation of rat liver glucose-regulated protein 58, GRP58/ERp57/ER-60, induced by fasting and leptin. FEBS Letters. 2006;580:199-205. DOI: 10.1016/j.febslet.2005.11.074
  • Woo EM, Fenyo D, Kwok BH, Funabiki H, Chait BT. Efficient identification of phosphorylation by mass spectrometric phosphopeptide fingerprinting. Analytical Chemistry. 2008;80:2419-2425. DOI: 10.1021/ac702059p
  • Agrawal GK, Thelen JJ. Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics. 2005;5:4684-4688. DOI: 10.1002/pmic.200500021
  • Jensen ON, Wilm M, Shevchenko A, Mann, M. Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. In: Link AJ, editor. Methods in Molecular Biology: 2-D Proteome Analysis Protocols. Totowa, NJ, USA: Humana Press; 1999. pp. 513-530. DOI: 10.1385/1-59259-584-7:513
  • Yao Q, Bollinger C, Gao J, Xu D, Thelen JJ. P3DB: An integrated database for plant protein phosphorylation. Frontiers in Plant Science. 2012;3:206. DOI: 10.3389/fpls.2012.00206
  • Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics No. 38. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics; 1982. pp. 75-92
  • Tarentino AL, Gómez CM, Plummer TH. Deglycosylation of asparagine-linked glycans by peptide-N-glycosidase F. Biochemistry. 1985;24:4665-4671. DOI: 10.1021/bi00338a028
  • Sonnewald U, Sturm A, Chrispeels MJ, Willmitzer L. Targeting and glycosylation of patatin, the major potato tuber in leaves of transgenic tobacco. Planta. 1989;179:171-180. DOI: 10.1007/BF00393687
  • Silva-Sánchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics. 2015;156:1127-1141. DOI: 10.1002/pmic.201400410
  • Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics: A tutorial. Journal of Proteomics. 2011;74:1829-1841. DOI: 10.1016/j.prot.2011.05.040
  • Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME, Gygi SP. Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Molecular & Cellular Proteomics. 2011;10:M111.009654. DOI: 10.1074/mcp.M111.009654
  • Kim M-S, Zhong J, Pandey A. Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics. 2016;16:700-714. DOI: 10.1002/pmic.201500355
  • Suttle JC. Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: A critical assessment. Journal of Plant Physiology. 2004;161:157-164. DOI: 10.1078/0176-1617-01222
  • Aksenova NP, Sergeeva LI, Konstantinova TN, Golyanovskaya SA, Kolachevskaya OO, Romanov GA. Regulation of potato tuber dormancy and sprouting. Russian Journal of Plant Physiology. 2013;60:301-312. DOI: 10.1134/S1021443713030023
  • Sonnewald S, Sonnewald U. Regulation of potato tuber sprouting. Planta. 2014;239:27-38. DOI: 10.1007/s00425-013-1968-z
  • Mani F, Bettaieb T, Doudech N, Hannachi C. Physiological mechanisms for potato dormancy release and sprouting: A review. African Crop Science Journal. 2014;2:155-174
  • Myernik JA, Hajduch M. Seed proteomics. Journal of Proteomics. 2011;74:389-400. DOI: 10.1016/j.jprot.2010.12.004