Argumentación en la matemática escolar infantilAnálisis de una actividad TEM usando la Situación Argumentativa en Conexión Interdisciplinar

  1. Ángel Alsina 1
  2. Claudia Cornejo-Morales 2
  3. María Salgado 3
  1. 1 Universitat de Girona
    info

    Universitat de Girona

    Girona, España

    ROR https://ror.org/01xdxns91

  2. 2 Pontificia Universidad Católica de Valparaíso
    info

    Pontificia Universidad Católica de Valparaíso

    Valparaíso, Chile

    ROR https://ror.org/02cafbr77

  3. 3 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Zeitschrift:
Avances de investigación en educación matemática: AIEM

ISSN: 2254-4313

Datum der Publikation: 2021

Nummer: 20

Seiten: 141-159

Art: Artikel

DOI: 10.35763/AIEM20.3999 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Avances de investigación en educación matemática: AIEM

Ziele für nachhaltige Entwicklung

Zusammenfassung

The presence of argumentation in a STEM activity implemented with 20 students of Early Childhood Ed-ucation Grade 3 (5-6 years) is analysed. According to the interdisciplinary nature of the activity, where knowledge of mathematics and science is integrated, a variant of the Argumentative Situation, which considers both functional and contextual aspects of argumentation in early school mathematics, is used: the Argumenta-tive Situation in Interdisciplinary Connection. The analysis of data shows that in the sequence of tasks, the main function of the argumentation is to explain and the character is narrative: the arguments are short and concise, they answer a specific question and use key expressions to show the relationship between its constituent ele-ments. It is concluded the necessity of designing new studies with this analytical framework to consolidate these initial results.

Bibliographische Referenzen

  • Alsina, Á., Maurandi, A., Ferre, E. y Coronata, C. (2021). Validating an instrument to evaluate the teaching of mathematics through processes. International Journal of Science and Mathematics Education, 19, 559-577. https://doi.org/10.1007/s10763-020-10064-y
  • Artigue, M. y Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45, 797-810. https://doi.org/10.1007/s11858-013-0506-6
  • Balacheff, N. (1999). Is argumentation an obstacle? Invitation to a debate. International Newsletter on the Teaching and Learning of Mathematical Proof, Mai/Juin. http://www.lettredelapreuve.org/OldPreuve/Newsletter/990506Theme/990506ThemeUK.html
  • Boero, P. (2011). Argumentation and proof: Discussing a “successful” classroom discussion. En M. Pytlak, T. Rowland & E. Swoboda (eds.), Proceedings of the 7th Congress of the European Society for Research in Mathematics Education (pp. 120-130). ERME.
  • Boero, P., Douek, N., Morselli, F. y Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. En M. Fusaro et al. (Eds.), Proceedings of 34th International Conference of the Psychology of Mathematics Education (Vol. 1, pp. 179-205). PME.
  • Cornejo-Morales, C. y Alsina, Á. (2020). La argumentación en los currículos de Educación Matemática Infantil. Edma 0-6, 9(1), 12-30.
  • Cornejo-Morales, C. y Goizueta, M. (2019). El tránsito entre argumentos diagramáticos y narrativos en preescolar. Orientaciones y propuestas. UNO, 85, 28-31.
  • Cornejo-Morales, C., Goizueta, M. y Alsina, Á. (2021). La Situación Argumentativa: un modelo para analizar la argumentación en educación matemática infantil. PNA, 15(3),159-185.
  • Couso, D. (2017). Per a què estem a STEM? Un intent de definir l’alfabetització STEM per a tothom i amb valors. Ciències, 34, 22-30. https://doi.org/10.5565/rev/ciencies.403
  • De Villiers, M. (1993). El papel y la función de la demostración en matemáticas. Épsilon, 26, 15-30.
  • Douek, N. (2007). Some remarks about argumentation and proof. En P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 163-181). Sense Publishers. https://doi.org/10.1163/9789087901691_010
  • Duval, R. (1999). Argumentar, demostrar, explicar: ¿Continuidad o ruptura cognitiva? Grupo Editorial Iberoamérica.
  • Godino, J. D., Batanero, C., Cañadas, G. R. y Contreras, J. M. (2015). Articulación de la indagación y transmisión de conocimientos en la enseñanza y aprendizaje de las matemáticas. En B. D’Amore y M. I. Fandiño (eds.), Congreso Internacional Didáctica de la Matemática (pp. 249-269). Universidad de la Sabana.
  • Goizueta, M. (2019). Epistemic issues in classroom mathematical activity: There is more to students’ conversations than meets the teacher’s ear. The Journal of Mathematical Behavior, 55, 1-11. https://doi.org/10.1016/j.jmathb.2019.01.007
  • Goizueta, M. y Solar, H. (2019). Relaciones entre la argumentación en el aula de matemáticas y la mirada profesional del profesor. En R. Olfos, E. Ramos y D. Zakaryan (eds.), Aportes a la práctica docente desde la didáctica de la matemática (pp. 241-280). Graó.
  • Inglis, M., Mejía-Ramos J. P. y Simpson, A. (2007). Modeling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21. https://doi.org/10.1007/s10649-006-9059-8
  • Knipping, C. (2008). A method for revealing structures of argumentation in classroom proving processes. ZDM Mathematics Education, 40, 427-441. https://doi.org/10.1007/s11858-008-0095-y
  • Krummheuer, G. (1995). The ethnography of argumentation. En P. Cobb y H. Bauersfeld (eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp.229-269). Lawrence Erlbaum.
  • Krummheuer, G. (2013). The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years. Educational Studies in Mathematics, 84, 249-265. https://doi.org/10.1007/s10649-013-9471-9
  • Kuhn, D. (1991). The skills of argument. Cambridge University Press. https://doi.org/10.1017/CBO9780511571350
  • McMillan, J. H. y Schumacher, S. (2005). Investigación educativa. Pearson Addison Wesley.
  • National Council of Teachers of Mathematics [NCTM] (2003). Principios y estándares para la educación matemática. Thales.
  • Niss, M. (2002). Mathematical competencies and the learning of mathematics: The Danish Kom Project. Roskilde University Press.
  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walwerg Henriksson, H. Y. y Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Office for Official Publications of the European Communities.
  • Schwarz, B. B., Neuman, Y., Gil, J. y Ilya, M. (2003). Construction of collective and individual knowledge in argumentative activity. The Journal of the Learning Sciences, 12(2), 219-256. https://doi.org/10.1207/S15327809JLS1202_3
  • Solar, H. y Deulofeu, J. (2016). Condiciones para promover el desarrollo de la competencia de argumentación en el aula de matemáticas. Bolema, 30(56), 1092-1112. https://doi.org/10.1590/1980-4415v30n56a13
  • Toulmin, S. (1958). The uses of argument. Cambridge University Press. https://doi.org/10.1016/j.jmathb.2019.01.007