Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction

  1. Aygün, Mehtap 12
  2. Guillen‐Soler, Melanie 1
  3. Gimenez‐Lopez, Maria del Carmen 1
  4. Khlobystov, Andrei N. 34
  5. Kurtoglu, Abdullah 3
  6. Chamberlain, Thomas W. 5
  7. Vila‐Fungueiriño, Jose M. 1
  1. 1 Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
  2. 2 Present address: Faculty of Science Erzurum Technical University Erzurum 25050 Turkey
  3. 3 School of Chemistry University of Nottingham University Park Nottingham NG7 2RD United Kingdom
  4. 4 Nanoscale & Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD United Kingdom
  5. 5 Institute of Process Research and Development School of Chemistry University of Leeds Leeds LS2 9JT United Kingdom
Revista:
ChemSusChem

ISSN: 1864-5631 1864-564X

Año de publicación: 2021

Tipo: Artículo

DOI: 10.1002/CSSC.202101236 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: ChemSusChem

Referencias bibliográficas

  • Caban-Acevedo M., (2015), Nat. Mater., 14, pp. 1245, 10.1038/nmat4410
  • Cobo S., (2012), Nat. Mater., 11, pp. 802, 10.1038/nmat3385
  • Dresselhaus M., (2001), Nature, 414, pp. 332, 10.1038/35104599
  • Navarro R. M., (2007), Chem. Rev., 107, pp. 3952, 10.1021/cr0501994
  • Jiao Y., (2015), Chem. Soc. Rev., 44, pp. 2060, 10.1039/C4CS00470A
  • Benck J. D., (2014), ACS Catal., 4, pp. 3957, 10.1021/cs500923c
  • Fei H. L., (2015), Nat. Commun., 6, pp. 8668, 10.1038/ncomms9668
  • Gasteiger H. A., (2005), Appl. Catal. B, 56, pp. 9, 10.1016/j.apcatb.2004.06.021
  • Gasteiger H. A., (2009), Science, 324, pp. 48, 10.1126/science.1172083
  • Park S.-K., (2016), J. Mater. Chem. A, 4, pp. 12720, 10.1039/C6TA03458F
  • Lu S., (2016), Sci. China Mater., 59, pp. 217, 10.1007/s40843-016-0127-9
  • Durst J., (2015), J. Electrochem. Soc., 162, pp. F190, 10.1149/2.0981501jes
  • Cheng Y., (2017), Adv. Funct. Mater., 27, pp. 1700359, 10.1002/adfm.201700359
  • Cheng N. C., (2015), Adv. Mater., 27, pp. 277, 10.1002/adma.201404314
  • Xu Y., (2016), Chem. Soc. Rev., 45, pp. 3039, 10.1039/C5CS00729A
  • Esposito D. V., (2010), Angew. Chem. Int. Ed., 49, pp. 9859, 10.1002/anie.201004718
  • (2010), Angew. Chem., 122, pp. 10055, 10.1002/ange.201004718
  • Liu S., (2017), Eur. J. Inorg. Chem., pp. 535, 10.1002/ejic.201601277
  • Heydari-Bafrooei E., (2017), Int. J. Hydrogen Energy, 42, pp. 2961, 10.1016/j.ijhydene.2016.11.101
  • Zhang L., (2016), Nano Energy, 29, pp. 198, 10.1016/j.nanoen.2016.02.044
  • Li J., (2017), ACS Appl. Mater. Interfaces, 9, pp. 8151, 10.1021/acsami.7b01241
  • Grigoriev S. A., (2008), J. Power Sources, 177, pp. 281, 10.1016/j.jpowsour.2007.11.072
  • Bhowmik T., (2016), ACS Catal., 6, pp. 1929, 10.1021/acscatal.5b02485
  • Zhao Y., (2014), Angew. Chem. Int. Ed., 53, pp. 13934, 10.1002/anie.201409080
  • (2014), Angew. Chem., 126, pp. 14154, 10.1002/ange.201409080
  • Shalom M., (2014), Angew. Chem. Int. Ed., 53, pp. 3654, 10.1002/anie.201309415
  • (2014), Angew. Chem., 126, pp. 3728, 10.1002/ange.201309415
  • Zhang J. T., (2016), Angew. Chem. Int. Ed., 55, pp. 2230, 10.1002/anie.201510495
  • (2016), Angew. Chem., 128, pp. 2270, 10.1002/ange.201510495
  • Ito Y., (2015), Angew. Chem. Int. Ed., 54, pp. 2131, 10.1002/anie.201410050
  • (2015), Angew. Chem., 127, pp. 2159, 10.1002/ange.201410050
  • Duan J. J., (2015), ACS Nano, 9, pp. 931, 10.1021/nn506701x
  • Jiao Y., (2016), Nat. Energy, 1, pp. 16130, 10.1038/nenergy.2016.130
  • Wang D.-W., (2014), Energy Environ. Sci., 7, pp. 576, 10.1039/c3ee43463j
  • Gimenez-Lopez M. C., (2013), Angew. Chem. Int. Ed., 52, pp. 2051, 10.1002/anie.201207855
  • (2013), Angew. Chem., 125, pp. 2105, 10.1002/ange.201207855
  • La Torre A., (2012), ACS Nano, 6, pp. 2000, 10.1021/nn300400z
  • La Torre A., (2015), Small, 11, pp. 2756, 10.1002/smll.201402807
  • Gimenez-Lopez M. C., (2016), Adv. Mater., 28, pp. 9103, 10.1002/adma.201602485
  • Aygün M., (2018), Adv. Funct. Mater., 28, pp. 1802869, 10.1002/adfm.201802869
  • Xu L., (2008), Nanotechnology, 19, pp. 30
  • Beamson G., (1993), J. Chem. Educ., 70, pp. 1, 10.1021/ed070p1
  • Zalineeva A., (2015), Langmuir, 31, pp. 1605, 10.1021/la5025229
  • Benck J. D., (2014), ACS Catal., 4, pp. 3957, 10.1021/cs500923c
  • Li J., (2017), Adv. Sci., 4, pp. 1600380, 10.1002/advs.201600380
  • Tang Y. J., (2016), Adv. Energy Mater., 6, pp. 1600116, 10.1002/aenm.201600116
  • Morales-Guio C. G., (2014), Chem. Soc. Rev., 43, pp. 6555, 10.1039/C3CS60468C
  • Bockris J. O. M., (1952), J. Electrochem. Soc., 99, pp. 169, 10.1149/1.2779692
  • Bard A. J., (2001), Electrochemical Methods: Fundamentals and Applications, 2nd, pp. 580
  • Janata J., (2011), Angew. Chem. Int. Ed., 50, pp. 41, 10.1002/anie.201104618
  • Singh D. K., (2017), J. Mater. Chem. A, 5, pp. 6025, 10.1039/C6TA11057F
  • Liu Y., (2014), Sci. Rep., 4, pp. 6843, 10.1038/srep06843
  • Conway B., (2002), Electrochim. Acta, 47, pp. 3571, 10.1016/S0013-4686(02)00329-8
  • Gong M., (2014), Nat. Commun., 5, pp. 4695, 10.1038/ncomms5695
  • Kucernak A. R., (2016), J. Phys. Chem. C, 120, pp. 10721, 10.1021/acs.jpcc.6b00011
  • Gao M. R., (2015), Nat. Commun., 6, pp. 5982, 10.1038/ncomms6982
  • Lu Q., (2015), Nat. Commun., 6, pp. 6567, 10.1038/ncomms7567
  • Marković N. M., (1997), J. Phys. Chem. B, 101, pp. 5405, 10.1021/jp970930d
  • Han Y., (2016), J. Mater. Chem. A, 4, pp. 10
  • Ring L., (2019), Angew. Chem. Int. Ed., 58, pp. 17383, 10.1002/anie.201908649
  • (2019), Angew. Chem., 131, pp. 17544, 10.1002/ange.201908649
  • Bird M. A., (2020), ACS Appl. Mater. Interfaces, 12, pp. 18
  • Zhu J., (2020), Chem. Rev., 120, pp. 2
  • Deng D., (2016), Nat. Nanotechnol., 11, pp. 218, 10.1038/nnano.2015.340
  • Tian Y., (2017), Appl. Catal. A, 529, pp. 127, 10.1016/j.apcata.2016.10.021
  • Wang M., (2014), Renewable Sustainable Energy Rev., 29, pp. 573, 10.1016/j.rser.2013.08.090
  • Pal S., (2017), ACS Catal., 7, pp. 2676, 10.1021/acscatal.7b00032
  • Z. Ao S. Li (August 1st 2011). Hydrogenation of Graphene and Hydrogen Diffusion Behavior on Graphene/Graphane Interface Graphene Simulation2011 53–73 Edited by Jian Ru Gong IntechOpen DOI: 10.5772/20676.
  • Berashevich J., (2011), Phys. Rev. B, 83, pp. 195442, 10.1103/PhysRevB.83.195442
  • Gong C., (2012), ACS Nano, 6, pp. 5381, 10.1021/nn301241p
  • Psofogiannakis G. M., (2011), Chem. Commun., 47, pp. 7933, 10.1039/c1cc11389e
  • Parambhath V. B., (2011), J. Phys. Chem. C, 115, pp. 15679, 10.1021/jp202797q
  • Contescu C. I., (2009), J. Phys. Chem. C, 113, pp. 5886, 10.1021/jp900121k
  • Chen Z., (2018), Nat. Nanotechnol., 13, pp. 702, 10.1038/s41565-018-0167-2
  • Aygün M., (2017), J. Mater. Chem. A, 5, pp. 21467, 10.1039/C7TA03691D