Numerical Analysis of Finite Element Methods for Eddy Current Problems. Applications to Electrode Simulation

  1. Bermúdez, Alfredo
  2. Salgado, Pilar
  3. Rodríguez, Rodolfo
Libro:
Numerical Mathematics and Advanced Applications

Ano de publicación: 2004

Páxinas: 3-19

Tipo: Capítulo de libro

DOI: 10.1007/978-3-642-18775-9_1 GOOGLE SCHOLAR

Referencias bibliográficas

  • Alonso, A., Valli, A. (1997): A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg., 143, 97–112.
  • Alonso, A., Valli, A. (1999): An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp., 68, 607–631.
  • Ammari, H., Buffa, A., Nédélec, J.-C. (2000): A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math., 60, 1805–1823.
  • Amrouche, C., Bernardi, C., Dauge. M., Girault, V. (1998): Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21, 823–864.
  • Bermúdez, A., Bullón, J., Pena, F., Salgado, P. (2003), A numerical method for transient simulation of metallurgical compound electrodes, Finite Elem. Anal. Des., 39, 283–299.
  • Bermúdez, A., Muñoz, R. (1999): Existence of solution of a coupled problem arising in the thermoelectrical simulation of an electrode, Quart. of Appl. Math., 57, 621–636.
  • Bermúdez, A., Rodríguez, R., Salgado, P. (2002): A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations, SIAM J. Numer. Anal., 40, 1823–1849.
  • Bermúdez, A., Rodríguez, R., Salgado, P. (2003): Numerical analysis of the electric field formulation of an eddy currents problem, C. R. Acad. Sci. Paris, Serie I, 337, 359–364.
  • Bermúdez, A., Rodríguez, R., Salgado, P., Numerical treatment of realistic boundary conditions for the eddy current problem in an electrode via Lagrange multipliers, Math. Comp., (to appear).
  • Bossavit, A. (1991): The computation of eddy-currents in dimension 3 by using mixed finite elements and boundary elements in association, Math. Comput. Modelling, 15, 33–42.
  • Bossavit, A. (1999): “Hybrid” electric-magnetic methods in eddy-current problems, Comput. Methods Appl. Mech. Engrg., 178, 383–391.
  • Bossavit, A. (2000): Most general “non-local” boundary conditions for the Maxwell equation in a bounded region, COMPEL, 19, 239–245.
  • Bossavit, A., Vérité, J.C. (1982): A mixed FEM-BIEM method to solve 3-D eddy current problems, IEEE Trans. Mag., 18, 431–435.
  • Bullon, J., Gallego, V. (1994): The use of a compound electrode for the production of silicon metal. Electric Furnace Conference Proceedings, Vol. 52, Iron & Steel Society, Warrendale, PA, 371–374.
  • D’Ambrosio, P., Letizia, I. (1980): Temperature and internal stress distribution of carbon electrodes used in an electric arc furnace for the production of silicon metal. Proceedings of Carbon’80, Baden-Baden, 526–529.
  • Howison, S.D., Rodrigues, J.F., Shillor, M. (1993): Stationary solutions to the thermistor problem, J. Math. Anal. Appl., 174 2, 573–588.
  • Innvazr, R., Fidje, K., Sira, T. (1987): 3-dimensional calculations on smelting electrodes. Reprinted in MIC-Model. Identif. Control 8, 103–115.
  • Innvaer, R., Olsen, L. (1980): Practical use of mathematical models for Søderberg electrodes. In: Electric Furnace Conference Proceedings, vol. 38. Iron & Steel Society, Warrendale, PA, 40–47.
  • Nédélec, J.-C. (1980): Mixed finite elements in ℝ3, Numer. Math., 35, 315–341.
  • Salgado, P. (2002): Mathematical and numerical analysis of some electromagnetic problems. Application to the simulation of metallurgical electrodes. Ph. D. Thesis, Universidade de Santiago de Compostela, Spain.