On gender perspective in Statistics and Operations Research

  1. Saavedra-Nieves, Paula 1
  2. Saavedra-Nieves, Alejandro 1
  1. 1 Universidade de Santiago de Compostela

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

BEIO, Boletín de Estadística e Investigación Operativa

ISSN: 1889-3805

Ano de publicación: 2021

Volume: 37

Número: 2

Páxinas: 148-164

Tipo: Artigo

Outras publicacións en: BEIO, Boletín de Estadística e Investigación Operativa


The needing of promoting the women role in society makes it one of the Sustainable Development Goals (SDGs) in the 2030 Agenda for Sustainable Development of the United Nations. Various institutions have developed specific legislation with the only purpose of minimising the gender gap in the different pillars of society. Among others, Science should not be left out, as well as those disciplines that have experienced a strong boost such as Statistics and Operations Research. This paper focuses on addressing the impact of those gender perspective policies in both fields. To this aim, we analyze the time series of the number of published papers on topics in Statistics and Operation Research in the period 2000 to 2020 that incorporate the gender perspective.

Referencias bibliográficas

  • Artiles-Viera M.and Locane, M.and P´epin A. and V. Willis-Mazzichi (2017). ✭✭Implicit Gender Biases During Evaluations: How to raise awareness and change attitudes?✮✮ In: url: http://ec.europa. eu / research / swafs / pdf / pub _ gender _ equality / report _ on _ implicit _ gender _ biases _ during_evaluations.pdf..
  • Breusch, T. S. (1978). ✭✭Testing for autocorrelation in dynamic linear models✮✮. In: Australian Economic Papers 17.31, pp. 334–355.
  • Commission, European (2019). She Figures 2018: Women and Science Statistics and Indicators
  • Davies, R. B. (1987). ✭✭Hypothesis testing when a nuisance parameter is present only under the alternative✮✮. In: Biometrika 74.1, pp. 33–43.
  • Davies, R. B. (2002). ✭✭Hypothesis testing when a nuisance parameter is present only under the alternative: linear model case✮✮. In: Biometrika, pp. 484–489.
  • Godfrey, L. G. (1978). ✭✭Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables✮✮. In: Econometrica: Journal of the Econometric Society, pp. 1293–1301.
  • Hinkley, D. V. (1969). ✭✭Inference about the intersection in two-phase regression✮✮. In: Biometrika 56.3, pp. 495–504.
  • Hudson, D. J. (1966). ✭✭Fitting segmented curves whose join points have to be estimated✮✮. In: Journal of the american statistical association 61.316, pp. 1097–1129.
  • Klinge, I. (2008). ✭✭GenderBasic: Promoting integration of the gender dimension in biomedical and health-related research✮✮. In: Centre for Gender and Diversity, School for Public Health and Primary Care, Maastricht.
  • Muggeo, V. MR (2003). ✭✭Estimating regression models with unknown break-points✮✮. In: Statistics in medicine 22.19, pp. 3055–3071.
  • Muggeo, V. MR (2008). ✭✭Segmented: an R package to fit regression models with broken-line relationships✮✮. In: R news 8.1, pp. 20–25.
  • Muggeo, V. MR (2016). ✭✭Testing with a nuisance parameter present only under the alternative: a score-based approach with application to segmented modelling✮✮. In: Journal of Statistical Computation and Simulation 86.15, pp. 3059–3067.
  • R Core Team (2021). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. url: http://www.%20R-project.%20org.
  • Research, European Commission. Directorate General for and European Commission. Science (2003). She Figures: Women and Science Statistics and Indicators. Vol. 20733. Office for Official Publications of the European Communities.
  • RSME (2021). ✭✭BOLET´IN de la RSME, 26 DE MARZO DE 2021. N´umero 707✮✮. In: url: https: //www.rsme.es/wp-content/uploads/2021/03/Boletin707.pdf.
  • Schiebinger, L. (1999). ✭✭Has feminism changed science✮✮. In: Figurationen 1, pp. 50–64.
  • Schiebinger, L. (2014). ✭✭Gendered innovations: harnessing the creative power of sex and gender analysis to discover new ideas and develop new technologies✮✮. In: Triple Helix 1.1, pp. 1–17.
  • Schiebinger, L., I. Klinge, I. S´anchez de Madariaga, H. Y. Paik, M. Schraudner, and M. Stefanick (2011). Gendered Innovations in Science, Health & Medicine, and Engineering. Stanford University.
  • Sprent, P (1961). ✭✭Some hypotheses concerning two phase regression lines✮✮. In: Biometrics 17.4, pp. 634–645.