Horizontal Gene Transfer Among Neisseria Species and Humans

  1. Feavers, I. M.
  2. de Miguel, T.
  3. Villa, T. G.
  4. Sánchez, S.
  5. Gorringe, A. R.
Libro:
Horizontal Gene Transfer

Ano de publicación: 2019

Páxinas: 361-376

Tipo: Capítulo de libro

DOI: 10.1007/978-3-030-21862-1_15 GOOGLE SCHOLAR

Referencias bibliográficas

  • Aas FE, Løvold C, Koomey M (2002a) An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to type IV pilus expression. Mol Microbiol 46(5):1441–1450
  • Aas FE et al (2002b) Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression. Mol Microbiol 46(3):749–760. https://doi.org/10.1046/j.1365-2958.2002.03193.x
  • Aho EL et al (2005) Neisserial pilin genes display extensive interspecies diversity. FEMS Microbiol Lett 249(2):327–334. https://doi.org/10.1016/j.femsle.2005.06.035
  • Ambur OH, Frye SA, Tønjum T (2007) New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 189(5):2077–2085. https://doi.org/10.1128/JB.01408-06
  • Andersen B et al (1993) Neisseria weaveri sp. nov., formerly CDC Group M-5, a Gram-negative bacterium associated with dog bite wounds. J Clin Microbiol 31(9):2456–2466
  • Anderson MT, Seifert HS (2011a) Neisseria gonorrhoeae and humans perform an evolutionary LINE dance. Mob Genet Elem 1(1):85–87. https://doi.org/10.4161/mge.1.1.15868
  • Anderson MT, Seifert HS (2011b) Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. MBio 2(1):e00005–e00011. https://doi.org/10.1128/mBio.00005-11
  • Assalkhou R et al (2007) The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 153(5):1593–1603. https://doi.org/10.1099/mic.0.2006/004200-0
  • Bart D, van der Ende (1999) Antigenic variation of the class I outer membrane protein in hyperendemic Neisseria meningitidis strains in the Netherlands. Infect Immun 67(8):3842–3846
  • Beernink PT, Granoff DM (2009) The modular architecture of meningococcal factor H-binding protein. Microbiology 155(Pt 9):2873–2883. https://doi.org/10.1099/mic.0.029876-0
  • Benam AV et al (2011) Structure-function relationships of the competence lipoprotein ComL and SSB in meningococcal transformation. Microbiology 157(Pt 5):1329–1342. https://doi.org/10.1099/mic.0.046896-0
  • Berry J-L et al (2013) Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species. PLoS Genet 9(12):e1004014. https://doi.org/10.1371/journal.pgen.1004014
  • Beyene GT et al (2017) Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis. BMC Microbiol 17(1):1–18. https://doi.org/10.1186/s12866-017-1004-8
  • Biswas GD et al (1977) Factors affecting genetic transformation of Neisseria gonorrhoeae. J Bacteriol 129(2):983–992
  • Biswas GD, Thompson SA, Sparling PF (1989) Gene transfer in Neisseria gonorrhoeae. Clin Microbiol Rev 2:S24–S28
  • Bovre K, Holten E (1970) Neisseria elongata sp. nov., a rod-shaped member of the genus Neisseria. Re-evaluation of cell shape as a criterion in classification. J Gen Microbiol 60(1):67–75. https://doi.org/10.1099/00221287-60-1-67
  • Bowler LD et al (1994) Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J Bacteriol 176(2):333–337
  • Brynildsrud OB et al (2018) Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa. Proc Natl Acad Sci U S A 115(21):5510–5515. https://doi.org/10.1073/pnas.1802298115
  • Budroni S et al (2011) Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci U S A 108(11):4494–4499. https://doi.org/10.1073/pnas.1019751108
  • Callaghan MM et al (2017) Secretion of chromosomal DNA by the Neisseria gonorrhoeae type IV secretion system. Mol Microbiol 413:323–345. https://doi.org/10.1007/978-3-319-75241-9_13
  • Cartwright KA et al (1987) The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect 99(3):591–601
  • Caugant DA, Maiden MCJ (2009) Meningococcal carriage and disease--population biology and evolution. Vaccine 27(2):B64–B70. https://doi.org/10.1016/j.vaccine.2009.04.061
  • Caugant DA et al (1994) Asymptomatic carriage of Neisseria meningitidis in a randomly sampled population. J Clin Microbiol 32(2):323–330
  • Cehovin A et al (2013) Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci 110(8):3065–3070. https://doi.org/10.1073/pnas.1218832110
  • Chaussee MS, Hill SA (1998) Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae. J Bacteriol 180(19):5117–5122
  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2(3):241–249. https://doi.org/10.1038/nrmicro844
  • Chen I, Gotschlich EC (2001) ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol 183(10):3160–3168. https://doi.org/10.1128/JB.183.10.3160-3168.2001
  • Claus H et al (2000) Differential distribution of novel restriction-modification systems in clonal lineages of Neisseria meningitidis. J Bacteriol 182(5):1296–1303
  • Claus H et al (2005) Genetic analysis of meningococci carried by children and young adults. J Infect Dis 191(8):1263–1271. https://doi.org/10.1086/428590
  • Clemence MEA, Maiden MCJ, Harrison OB (2018) Characterization of capsule genes in non-pathogenic Neisseria species. Microbial Genomics 4:1–12. https://doi.org/10.1099/mgen.0.000208
  • Collins RF et al (2003) Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J Bacteriol 185(8):2611–2617
  • Cury GCG et al (2014) Inflammatory response of Haemophilus influenzae biotype aegyptius causing Brazilian Purpuric fever. Braz J Microbiol 45(4):1449–1454
  • Davidsen T et al (2004) Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res 32(3):1050–1058. https://doi.org/10.1093/nar/gkh255
  • Davis J et al (2001) Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria. J Bacteriol 183(15):4626–4635. https://doi.org/10.1128/JB.183.15.000-000.2001
  • Dietrich M et al (2011) Activation of NF-kappaB by Neisseria gonorrhoeae is associated with microcolony formation and type IV pilus retraction. Cell Microbiol 13(8):1168–1182. https://doi.org/10.1111/j.1462-5822.2011.01607.x
  • Doherty AJ, Serpell LC, Ponting CP (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res 24(13):2488–2497
  • Domingues S, Nielsen KM (2017) Membrane vesicles and horizontal gene transfer in prokaryotes. Curr Opin Microbiol 38:16–21. https://doi.org/10.1016/j.mib.2017.03.012
  • Dorward DW, Garon CF, Judd RC (1989) Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171(5):2499–2505. https://doi.org/10.1128/jb.171.5.2499-2505.1989
  • Duffin PM, Seifert HS (2012) Genetic transformation of Neisseria gonorrhoeae shows a strand preference. FEMS Microbiol Lett 334(1):44–48. https://doi.org/10.1111/j.1574-6968.2012.02612.x
  • Dyet KH, Martin DR (2005) Sequence variation in the porB gene from B:P1.4 Meningococci causing New Zealand’s epidemic. J Clin Microbiol 43(2):838–842. https://doi.org/10.1128/JCM.43.2.838-842.2005
  • Elkins C et al (1991) Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173(12):3911–3913
  • Facius D, Meyer TF (1993) A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae and the effect of a comA defect on pilin variation. Mol Microbiol 10(4):699–712
  • Feavers IM et al (1992) Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Mol Microbiol 6(4):489–495
  • Fermer C et al (1995) Sulfonamide resistance in Neisseria meningitidis as defined by site-directed mutagenesis could have its origin in other species. J Bacteriol 177(16):4669–4675
  • Frosch M, Meyer TF (1992) Transformation-mediated exchange of virulence determinants by co-cultivation of pathogenic Neisseriae. FEMS Microbiol Lett 100(1–3):345–349
  • Frye SA et al (2013) Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet 9(4):e1003458. https://doi.org/10.1371/journal.pgen.1003458
  • Frye SA et al (2015) The inner membrane protein PilG interacts with DNA and the secretin PilQ in transformation. PLoS One 10(8):e0134954. https://doi.org/10.1371/journal.pone.0134954
  • Fussenegger M et al (1997) Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. Gene 192(1):125–134
  • Gangel H et al (2014) Concerted spatio-temporal dynamics of imported DNA and ComE DNA uptake protein during gonococcal transformation. PLoS Pathog 10(4):e1004043. https://doi.org/10.1371/journal.ppat.1004043
  • Goodman SD, Scoccat JJ (1988) Skrip Lakonan Arab TAC 501. 85(September):6982–6986
  • Goodman SD et al (2006) Mu-like Prophage in serogroup B Neisseria meningitidis coding for surface-exposed antigens. J Clin Microbiol 85(4):2580–2588. https://doi.org/10.1128/IAI.69.4.2580-2588.2001
  • Hamilton HL, Dillard JP (2006) Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 59(2):376–385. https://doi.org/10.1111/j.1365-2958.2005.04964.x
  • Han XY, Hong T, Falsen E (2006) Neisseria bacilliformis sp. nov. isolated from human infections. J Clin Microbiol 44(2):474–479. https://doi.org/10.1128/JCM.44.2.474-479.2006
  • Harrison OB, Maiden MC, Rokbi B (2008) Distribution of transferrin binding protein B gene (tbpB) variants among Neisseria species. BMC Microbiol 8(1):66. https://doi.org/10.1186/1471-2180-8-66
  • Hepp C, Maier B (2016) Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. Proc Natl Acad Sci U S A 113(44):12467–12472. https://doi.org/10.1073/pnas.1608110113
  • Hobbs MM et al (1994) Microevolution within a clonal population of pathogenic bacteria: recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis. Mol Microbiol 12(2):171–180
  • Holmes B et al (1993) Neisseria weaveri sp. nov. (formerly CDC group M-5), from dog bite wounds of humans. Int J Syst Bacteriol 43(4):687–693. https://doi.org/10.1099/00207713-43-4-687
  • Hotopp JC et al (2006) Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 152(Pt 12):3733–3749. https://doi.org/10.1099/mic.0.29261-0
  • Hovland E et al (2017) DprA from Neisseria meningitidis: properties and role in natural competence for transformation. Microbiology 163(7):1016–1029. https://doi.org/10.1099/mic.0.000489
  • Joseph B et al (2011) Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLoS One 6(4):e18441. https://doi.org/10.1371/journal.pone.0018441
  • Karch A, Vogel U, Claus H (2015) Role of penA polymorphisms for penicillin susceptibility in Neisseria lactamica and Neisseria meningitidis. Int J Med Microbiol 305(7):729–735. https://doi.org/10.1016/j.ijmm.2015.08.025
  • Kłyż A, Piekarowicz A (2018) Phage proteins are expressed on the surface of Neisseria gonorrhoeae and are potential vaccine candidates. PLoS One 13(8):e0202437. https://doi.org/10.1371/journal.pone.0202437
  • Lauer P, Albertson NH, Koomey M (1993) Conservation of genes encoding components of a type IV pilus assembly/two-step protein export pathway in Neisseria gonorrhoeae. Mol Microbiol 8(2):357–368
  • Lewis DA (2010) The Gonococcus fights back: is this time a knock out? Sex Transm Infect 86(6):415–421. https://doi.org/10.1136/sti.2010.042648
  • Li M-S et al (2003) Identification and characterization of genomic loci unique to the Brazilian purpuric fever clonal group of H. influenzae biogroup aegyptius: functionality explored using meningococcal homology. Mol Microbiol 47(4):1101–1111
  • Linz B et al (2000) Frequent interspecific genetic exchange between commensal neisseriae and Neisseria meningitidis. Mol Microbiol 36(5):1049–1058. https://doi.org/10.1046/j.1365-2958.2000.01932.x
  • Liu G, Tang CM, Exley RM (2015) Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161(7):1297–1312. https://doi.org/10.1099/mic.0.000086
  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58(3):563–602
  • Maiden MC et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145
  • Marri PR et al (2010) Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 5(7):e11835. https://doi.org/10.1371/journal.pone.0011835
  • Mehr IJ, Seifert HS (1998) Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30(4):697–710. https://doi.org/10.1046/j.1365-2958.1998.01089.x
  • Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407(6800):98–102. https://doi.org/10.1038/35024105
  • Mongold JA (1992) DNA repair and the evolution of transformation in Haemophilus influenzae. Genetics 132(4):893–898
  • Mulhall RM et al (2016) Resolution of a protracted Serogroup B meningococcal outbreak with whole-genome sequencing shows interspecies genetic transfer. J Clin Microbiol 54(12):2891–2899. https://doi.org/10.1128/JCM.00881-16
  • Obergfell KP, Seifert S (2015) Mobile DNA in the pathogenic Neisseria. In: Mobile DNA III. American Society of Microbiology, Washington, DC, pp 451–469. https://doi.org/10.1128/microbiolspec.MDNA3-0015-2014
  • Ohnishi M et al (2010) Spread of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob Agents Chemother 54(3):1060–1067. https://doi.org/10.1128/AAC.01010-09
  • Pandey A, Cleary DW, Laver JR, Gorringe A, Deasy AM, Dale AP, Morris PD, Didelot X, Maiden MCJ, Read RC (2018) Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection. Nat Commun 9(1):4753
  • Piekarowicz A et al (2014) Neisseria gonorrhoeae filamentous phage Ngo 6 is capable of infecting a variety of Gram-negative bacteria. J Virol 88(2):1002–1010. https://doi.org/10.1128/JVI.02707-13
  • Qvarnstrom Y, Swedberg G (2006) Variations in gene organization and DNA uptake signal sequence in the folP region between commensal and pathogenic Neisseria species. BMC Microbiol 6:11. https://doi.org/10.1186/1471-2180-6-11
  • Rådström P et al (1992) Transformational exchanges in the dihydropteroate synthase gene of Neisseria meningitidis: a novel mechanism for acquisition of sulfonamide resistance. J Bacteriol 174(20):6386–6393
  • Ramsey ME, Woodhams KL, Dillard JP (2011) The gonococcal genetic island and type IV secretion in the pathogenic Neisseria. Front Microbiol 2:1–9. https://doi.org/10.3389/fmicb.2011.00061
  • Roberts MC (1989) Plasmids of Neisseria gonorrhoeae and other Neisseria species. Clin Microbiol Rev 2:18–23. https://doi.org/10.1063/1.2000457
  • Schoen C et al (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci U S A 105(9):3473–3478. https://doi.org/10.1073/pnas.0800151105
  • Serino L, Virji M (2002) Genetic and functional analysis of the phosphorylcholine moiety of commensal Neisseria lipopolysaccharide. Mol Microbiol 43(2):437–448
  • Smith HO, Gwinn ML, Salzberg SL (1999) DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 150(9–10):603–616. https://doi.org/10.1016/S0923-2508(99)00130-8
  • Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92(5):1364–1371
  • Sparling PF (1986) The roles of sexual and asexual gene transfer in emergence of antibiotic resistant gonococci. Trans Am Clin Climatol Assoc 97:60–68
  • Spratt BG et al (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34(2):115–125
  • Steinberg VI et al (1976) Isolation and characterization of a bacteriophage specific for Neisseria perflava. J Clin Microbiol 4(1):87–91
  • Stephens DS (1999) Uncloaking the meningococcus: dynamics of carriage and disease. Lancet 353(9157):941–942. https://doi.org/10.1016/S0140-6736(98)00279-7
  • Swanson J (1973) Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J Exp Med 137(3):571–589
  • Thulin S et al (2006) Total variation in the penA gene of Neisseria meningitidis: correlation between susceptibility to beta-lactam antibiotics and penA gene heterogeneity. Antimicrob Agents Chemother 50(10):3317–3324. https://doi.org/10.1128/AAC.00353-06
  • Unemo M, Shafer WM (2011) Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann N Y Acad Sci 1230(1):E19–E28. https://doi.org/10.1111/j.1749-6632.2011.06215.x
  • Wang X et al (2015) Changes in the population structure of invasive Neisseria meningitidis in the United States after Quadrivalent meningococcal conjugate vaccine licensure. J Infect Dis 211(12):1887–1894. https://doi.org/10.1093/infdis/jiu842
  • Weinstein P (1991) The Australian bushfly (Musca vetustissima Walker) as a vector of Neisseria gonorrhoeae conjunctivitis. Med J Aust 155(10):717
  • Whitchurch CB et al (1991) Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 101(1):33–44
  • WHO Guidelines for the Treatment of Neisseria gonorrhoeae (2016) World Health Organization, Geneva (no date)
  • Wolfgang WJ et al (2011) Neisseria wadsworthii sp. nov. and Neisseria shayeganii sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 61(1):91–98. https://doi.org/10.1099/ijs.0.022426-0
  • Xu Z et al (2015) Phylogenetic study of clonal complex (CC)198 capsule null locus (cnl) genomes: a distinctive group within the species Neisseria meningitidis. Infect Genet Evol 34:372–377. https://doi.org/10.1016/j.meegid.2015.07.013
  • Yero D et al (2010) Variation in the Neisseria meningitidis FadL-like protein: an evolutionary model for a relatively low-abundance surface antigen. Microbiology 156(12):3596–3608. https://doi.org/10.1099/mic.0.043182-0
  • Zhang Y et al (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4):488–503. https://doi.org/10.1016/j.molcel.2013.05.001
  • Zhu P et al (2002) Genetic diversity of three lgt loci for biosynthesis of lipooligosaccharide (LOS) in Neisseria species. Microbiology 148(Pt 6):1833–1844. https://doi.org/10.1099/00221287-148-6-1833