Fractal economy functions: cognitive and participation

  1. Michael Barnsley 1
  2. María Ramos 2
  3. Sebastian Villasante 2
  1. 1 Universidad Nacional de Australia
  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Investigación administrativa

ISSN: 2448-7678 1870-6614

Ano de publicación: 2012

Volume: 41

Número: 110

Páxinas: 49-56

Tipo: Artigo

DOI: 10.35426/IAV41N110.04 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Investigación administrativa

Obxectivos de Desenvolvemento Sustentable

Resumo

In this paper we present fractal modeling that will help us understand and analyze the prospects of reaching the stations listed its shares in the financial market and the correlation of the latter with the company, including relaxation of the ranges we purchase and sales functions sine and cosine to serve as basis for investment circles via fractal Fibonacci series is non-parametric statistics with Golden mean.

Referencias bibliográficas

  • Alligood, K.,Yorke, J.. (1996). An Introduction Dynamical Systems Fractals. Journal of International Economics. 73
  • Batten, J.,Ellis, C.. (1996). Fractal Structures and Trading Systems. World Economy Review. 45
  • Braun, E.. (1994). Chaos, fractals and strange things. Fondo de Cultura Economica. Mexico.
  • Briggs, J.. (1990). Turbulent Mirror. Harper and Row. New York.
  • Dacarogna, M.,Ramazan, G.. (2001). An Introduction to High-Frequency Finance. Academic Press.
  • Diebold, F.,Nason, J.. (1990). Non-parametric exchange iterations. Journal of International Economics. 31
  • Guzmán, Martín,Morán, M.,Reyes, M.. (1993). Fractal structures. Labor. Barcelona.
  • Mandelbrot, B.. (2004). New “anomalous” multiplicative multifractals: left-sided f (á) and the modeling of DT. Scientific American. 78-92
  • Mandelbrot, B.. (2004). Stochastic volatility, power-laws and long memory. Quantitative Finance. 56-67
  • Mantegna, R.,Stanley, H.. (1995). Scaling behavior in the dynamics of an economic. 35
  • Romero, G.,Ojeda, R.. (2004). Fractal Time Series and a Forecast Method. Mathematical Models Applied to Biological Sciences, Economics and Complex Systems. Sienna.
  • Sidney, A.. (1961). Price movements in speculative markets. Industrial Management Review. 7-11
  • Shoroeder, F.. (2003). From Here to Infinity, a guide to today's Mathematics. Oxford University Press.