Programmed Cell Death in Seeds: An Adaptive Mechanism Required for Life

  1. J. Matilla, Angel
Libro:
Seed Dormancy and Germination

ISBN: 9781789848601

Ano de publicación: 2020

Tipo: Capítulo de libro

DOI: 10.5772/INTECHOPEN.86833 GOOGLE SCHOLAR

Referencias bibliográficas

  • Rantong G, Gunawardena AHLAN. Programmed cell death: Genes involved in signaling, regulation, and execution in plants and animals. Botany. 2015;93:193-210. DOI: 10.1139/cjb-2014-0152
  • Daneva A, Gao Z, Durme MV, Nowack MK. Functions and regulation of programmed cell death in plant development. Annual Review of Cell and Developmental Biology. 2016;32:441-468. DOI: 10.1146/annurev-cellbio-111315-124915
  • Durand PM, Sym S, Michod RE. Programmed cell death and complexity in microbial systems. Current Biology. 2016;26:R587-R593. DOI: 10.1016/j.cub.2016.05.057
  • Young TE, Gallie DR. Programmed cell death during endosperm development. Plant Molecular Biology. 2000;44:283-301
  • Domínguez F, Cejudo FJ. Programmed cell death (PCD): An essential process of cereal seed development and germination. Frontiers in Plant Science. 2014;5:366. DOI: 10.3389/fpls.2014.00366
  • López-Fernández MP, Maldonado S. Programmed cell death in seeds of angiosperms. Journal of Integrative Plant Biology. 2015;57:996-1002. DOI: 10.1111/jipb.12367
  • Locato V, De Gara L. Programmed cell death in plants: An overview. In: De Gara L, Locato V, editors. Methods in Molecular Biology. New York, NY: Humana Press; 2018;1743:1-8. DOI: 10.1007/978-1-4939-7668-3_1
  • Latrasse D, Benhamed M, Bergounioux C, Raynaud C, Delarue M. Plant programmed cell death from a chromatin point of view. Journal of Experimental Botany. 2016;67:5887-5900. DOI: 10.1093/jxb/erw329
  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E. Cytochrome-c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco BY-2 cells in route to heat shock-induced cell death. Plant Physiology. 2006;141:208-219. DOI: 10.1104/pp.106.078683
  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T. Autophagy in plants—What’s new on the menu? Trends in Plant Science. 2016;21:134-144. DOI: 10.1016/j.t.plants.2015.10.008.ik
  • Michaeli S, Galili G. Degradation of organelles or specific organelle components via selective autophagy in plant cells. International Journal of Molecular Sciences. 2014;15:7624-7638. DOI: 10.3390/ijms15057624
  • Koyano T, Kurusu T, Hanamata S, Kuchitsu K. Regulation of vacuole-mediated programmed cell death during innate immunity and reproductive development in plants. In: Sawada H, Inoue N, Iwano M, editors. Sexual Reproduction in Animals and Plants. Tokyo: Springer; 2014;2014;431-440. https://doi.org/10.1007/978-4-431-54589-7_36
  • Senatore A, Trobacher CP, Greenwood JS. Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiology. 2009;149:775-790. DOI: 10.1104/pp.108.132720
  • Höwing T, Dann M, Hoefle C, Hückelhoven R, Gietl C. Involvement of A. thaliana endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 (AtCEP1) in powdery mildew induced and AtCPR5-controlled cell death. PLoS One. 2017;12:e0183870. DOI: 10.1371/journal.pone.0183870
  • Huysmans M, Lema A, Coll N, Nowack MK. Current Opinion Plant Biology. 2017;35:37-44. DOI: 10.1016/j.pbi.2016.11.005
  • Mittler R. ROS are good. Trends in Plant Science. 2017;22:11-19. DOI: 10.1016/j.tplants.2016.08.002
  • Gunawardena AN, McCabe PF. In: Gunawardena AN, McCabe PF, editors. Plant Programmed Cell Death. Cham: Springer; 2015. ISBN: 978-3-319-21033-9
  • Bruggeman Q , Raynaud C, Benhamed M, Delarue M. To die or not to die?—Lessons from lesion mimic mutants. Frontiers in Plant Science. 2015;6:24. DOI: 10.3389/fpls.2015.00024
  • van Doorn WG, Woltering EJ. Physiology and molecular biology of petal senescence. Journal of Experimental Botany. 2008;59:453-480. DOI: 10.1093/jxb/erm356
  • Thomas H. Senescence, ageing and death of the whole plant. New Phytologist. 2013;197:696-711. DOI: 10.1111/nph.12047
  • Dickman MB, Fluhr R. Centrality of host cell death in plant-microbe interactions. Annual Review of Phytopathology. 2013;51:543-570. DOI: 10.1146/annurev-phyto-081211-173027
  • Matilla MA. Metabolic responses of plants upon different plant-pathogen interactions. In: Ahmad P, Singh VP, editors. Plant Metabolites and Regulation under Environmental Stress. NY: Elsevier-Academic Press; 2018. ISBN: 978-0-128-12689-9
  • Matilla MA, Krell T. Chapter 3: Plant growth promotion and biocontrol mediated by plant-associated bacteria. In: Egamberdieva D, Ahmad P, editors. Plant Microbiome: Stress Response. NY: Springer; 2018. ISBN: 978-9-811-05513-3
  • Olvera-Carrillo Y et al. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plant. Plant Physiology. 2015;169:2684-2699. DOI: 10.1104/pp.15.00769
  • Gladish DK. Vascular aerenchyma and PCD. In: Gunawardena AHLAN, McCabe PF, editors. Plant Programmed Cell Death. Springer; 2015. pp. 97-121. ISBN: 978-3-319-21033-9
  • Escámez S, Tuominen H. Programmes of cell death and autolysis in tracheary elements: When a suicidal cell arranges its own corpse removal. Journal of Experimental Botany. 2014;65:1313-1321. DOI: 10.1093/jxb/eru057
  • Iglesias-Fernández R, Matilla A. Flooding stress and O2-shortage in plants: An overview. In: Ahmad P, editor. Water Stress and Crop Plants: A Sustainable Approach. 1st ed. Vol. 2. John Wiley & Sons, Ltd.; 2016. pp. 711-731. ISBN: 978-1-119-05436-8
  • Kumpf RP, Nowack MK. The root cap: A short story of life and death. Journal of Experimental Botany. 2015;66:5651-5662. DOI: 10.1093/jxb/erv295
  • Szewinska J, Sminska J, Wielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. Journal of Plant Physiology. 2016;207:10-21. DOI: 10.1016/j.jplph.2016.09.008
  • Schmid M, Simpson DJ, Sarioglu H, Lottspeich F, Gietl C. The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proceeding of the National Academy of Sciences USA. 2001;98:5353-5358. DOI: 10.1073/pnas.061038298
  • Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I. ER bodies in plants of the Brassicales order: Biogenesis and association with innate immunity. Frontiers in Plant Science. 2014;5:73. DOI: 10.3389/fpls.2014.00073
  • Hara-Nishimura I, Shimada T, Hatano K, Nishimura M. Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell. 1998;10:825-836. DOI: 10.1105/tpc.10.5.825
  • Mollenhauer HH, Totten C. Studies on seeds. V. Microbodies, glyoxysomes, and ricinosomes of castor bean endosperm. Plant Physiology. 1970;46:794-799. DOI: 10.1104/pp.46.6.794
  • Vigil EL. Cytochemical and developmental changes in microbodies (glyoxisomes) and related organelles of castor bean endosperm. The Journal of Cell Biology. 1970;46:435-454. DOI: 10.1083/jcb.46.3.435
  • de Bono AG, Greenwood JS. Characterization of programmed cell death in the endosperm cells of tomato seed: Two distinct death programs. Canadian Journal of Botany. 2006;84:791-804. DOI: 10.1139/b06-034
  • Greenwood JS, Helm M, Gietl C. Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proceeding of National of Academy of Sciences, USA. 2005;102:2238-2243. DOI: 10.1073/pnas.0409429102
  • Schmid M, Simpson D, Kalousek F, Gietl C. A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta. 1998;206:466-475. DOI: 10.1007/s004250050423
  • Lemos G, Hernández J, Amancio AE, Sales KV. Programmed cell death-related proteases in plants. In: Senturk M, editor. Biochemistry, Genetics and Molecular Biology “Enzyme Inhibitors and Activators”. 2017. ISBN: 978-953-51-3058-1
  • Okomoto T, Minamikawa T, Edward G, Vakharia V, Herman E. Posttranslational removal of the carboxyl-terminal KDEL of the cysteine protease SH-EP occurs prior to maturation of the enzyme. Journal of Biological Chemistry. 1999;274:11390-11398. DOI: 10.1074/jbc.274.16.11390
  • Richau KH, Kaschani F, Verdoes M, Pansuriya TC, Niessen S, Stuber K, et al. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiology. 2012;158:1583-1599. DOI: 10.1104/pp.112.194001
  • Rocha J, Pohl S, Roriz-Fonteles CS. Cloning and gene expression analysis of two cDNA of cysteine proteinase genes involved in programmed cell death in the inner integument from developing seeds of Jatropha curcas L. Gene Expression Patterns. 2018;27:122-127. DOI: 10.1016/j.gep.2017.12.002
  • Gietl C, Schmid M. Ricinosomes: An organelle for developmentally regulated programmed cell death in senescing plant tissues. Naturwissenschaften. 2001;2:49-58
  • van Doorn WG. Classes of programmed cell death in plants, compared to those in animals. Journal of Experimental Botany. 2011;62:4749-4761. DOI: 10.1093/jxb/err196
  • Hierl G, Höwing T, Isono E, Lottspeich F, Gietl C. Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles. Plant Molecular Biology. 2014;84:605-620. DOI: 10.1007/s11103-013-0157-6
  • Misas-Villamil JC, Van der Hoorn RAL, Doehlemann G. Papain-like cysteine proteases as hubs in plant immunity. New Phytologist. 2016;212:902-907. DOI: 10.1111/nph.14117
  • Liu H, Hu M, Wang Q , Cheng L, Zhang Z. Role of papain-like cysteine proteases in plant development. Frontiers in Plant Science. 2018;9:1717. DOI: 10.3389/fpls.2018.01717
  • Lu H, Chandrasekar B, Oeljeklaus J, Misas-Villamil J, Wang Z, Shindo T, et al. Subfamily-specific fluorescent probes for cysteine proteases display dynamic protease activities during seed germination. Plant Physiology. 2015;168:1462-1475. DOI: 10.1104/pp.114.254466
  • Tsujiy A, Tsukamoto K, Iwamoto K, Ito Y, Yuasa K. Enzymatic characterization of germination-specific cysteine protease-1 expressed transiently in cotyledons during the early phase of germination. Journal of Biochemistry. 2013;153:73-83. DOI: 10.1093/jb/mvs125
  • Díaz-Mendoza M, Domínguez-Figueroa JD, Velasco-Arroyo B, Cambra I, González-Melendi P, López-Gonzálvez A, et al. HvPap-1 C1A protease and HvCPI-2 cystatin contribute to barley grain filling and germination. Plant Physiology. 2016;170:2511-2524. DOI: 10.1104/pp.15.01944
  • Christoff AP, Rogerio M. The diversity of rice phytocystatins. Molecular Genetics and Genomics. 2014;289:1321-1330. DOI: 10.1007/s00438-014-0892-7
  • Christoff AP, Passaia G, Salvati C, Alves-Ferreira M, Margis-Pinheiro M, Margis R. Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases. Plant Molecular Biology. 2016;92:193-207. DOI: 10.1007/s11103-016-0504-5
  • Akasofu H, Yamauchi D, Mitsuhashi W, Minamikawa T. Nucleotide sequence of cDNA for sulfhydryl-endopeptidase (SH-EP) from cotyledons of germinating Vigna mungo seeds. Nucleic Acids Research. 1989;17:6733
  • Toyooka K, Okamoto T, Minamikawa T. Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. The Journal of Cell Biology. 2000;148:453-464. DOI: 0021-9525/2000/02/453/11
  • Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T. C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase. Plant Physiology. 2003;132:1892-1900. DOI: 10.1104/pp.103.021147
  • Helm M, Schmid M, Hierl G, Terneus K, Tan L, Lottspeich F, et al. KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells and dismantling of extensin scaffolds. American Journal of Botany. 2008;95:1049-1062. DOI: 10.3732/ajb.2007404
  • López-Fernández MP, Maldonado S. Ricinosomes provide an early indicator of suspensor and endosperm cells destined to die during late seed development in quinoa (Chenopodium quinoa). Annual Botany 2013;112:1253-1262. DOI: 10.1093/aob/mct184
  • Hierl G, Vothknecht U, Gietl C. Programmed cell death in Ricinus and Arabidopsis: The function of KDEL cysteine peptidases in development. Physiologia Plantarum. 2012;145:103-113. DOI: 10.1111/j.1399-3054.2012.01580.x
  • Mikkonen A, Porali I, Cercos M, Ho TH. A major cysteine proteinase, EPB, in germinating barley seeds: Structure of two intronless genes and regulation of expression. Plant Molecular Biology. 1996;31:239-254. DOI: 10.1007/BF00021787
  • Höwing T, Huesmann C, Hoefle C, Nagel MK, Isono E, Hückelhoven R, et al. Endoplasmic reticulum KDEL-tailed cysteine endopeptidase-1 of Arabidopsis (AtCEP1) is involved in pathogen defense. Frontiers in Plant Science. 2014;5:58. DOI: 10.3389/fpls.2014.00058
  • Trobacher CP, Senatore A, Holley C, Greenwood JS. Induction of a ricinosomal-protease and programmed cell death in tomato endosperm by gibberellic acid. Planta. 2013;237:665-679. DOI: 10.1007/s00425-012-1780-1
  • Van Hautegem TT, Waters AJ, Goodrich J, Nowack MK. Only in dying, life: Programmed cell death during plant development. Trends in Plant Science. 2015;20:102-113. DOI: 10.1016/j.tplants.2014.10.003
  • Tuan PA, Kumar R, Rehal PK, Toora PK, Ayele BT. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Frontiers in Plant Science. 2018;9:668. DOI: 10.3389/fpls.2018.00668
  • Radchuk V, Tran V, Radchuck R, et al. Vacuolar processing enzyme 4 contributes to maternal control of grain size in barley by executing programmed cell death in the pericarp. New Phytologist. 2017;218:1127. DOI: 10.1111/nph.14729
  • Becker C, Senyuk V, Shutov AD, Nong VH, Fischer J, Horstmann C, et al. A storage-globulin-degrading endopeptidase of vetch (Vicia sativa L.) seeds, is not involved in early steps of storage protein mobilization. European Journal of Biochemistry. 1997;248:304-312. DOI: 10.1111/j.1432-1033.1997.00304.x
  • Nadeau JA, Zhang XS, Li J, O’Neill SD. Ovule development: Identification of stage-specific and tissue-specific cDNAs. Plant Cell. 1996;8:213-239. DOI: 10.1105/tpc.8.2.213
  • He X, Kermode AR. Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds. Plant Molecular Biology. 2003;52:729-744. DOI: 10.1023/A:1025008117046
  • Schmid M, Simpson D, Gietl C. Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proceeding of National of Academy of Science USA. 1999;96:14159-14164. DOI: 10.1073/pnas.96.24.14159
  • Paireder M et al. The death enzyme NbCP14 is a unique papain-like cysteine proteinase with a pronounced S2 subsite selectivity. Archives of Biochemistry and Biophysics. 2016;603:110-117. DOI: 10.1016/j.abb.2016.05.017
  • Zhao P, Zhou XM, Zhang LY, Wang W, Ma LG, Yang LB, et al. A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos. PLoS Biology. 2013;11:e1001655. DOI: 10.1371/journal.pbio.1001655
  • Hara-Nishimura I, Hatsugai N. The role of vacuole in plant cell death. Cell Death and Differentiation. 2011;18:298-1304. DOI: 10.1038/cdd.2011.70
  • Minina EA, Smertenko AP, Bozhkov PV. Vacuolar cell death in plants: Metacaspase releases the brakes on autophagy. Autophagy. 2014;10:928-929. DOI: 10.4161/auto.28236
  • Jones AM. Programmed cell death in development and defense. Plant Physiology. 2001;125:94-97. DOI: 10.1104/pp.125.1.94
  • Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, et al. A plant caspase-like protease activated during the hypersensitive response. Plant Cell. 2004;16:157-171. DOI: 10.1105/tpc.017889
  • Zheng H, Staehelin LA. Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiology. 2011;155:2023-2035. DOI: 10.1104/pp.110.170159
  • Kroemer G. Twenty one more authors. Classification of cell death. Cell Death and Differentiation. 2009;16:3-11. DOI: 10.1038/cdd.2008.150
  • Salvesen GS, Boatright KM. Caspase-8. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of Proteolytic Enzymes. 2nd ed. San Diego, California, USA: Academic Press; 2004. pp. 1051-1070. ISBN: 9780123822208
  • Vorster BJ, Cullis CA, Kunert KJ. Plant vacuolar processing enzymes. Frontiers in Plant Science. 2019;10:479. Available from: https://doi.org/10.3389/fpls.2019.00479
  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M. Vacuolar processing enzyme: An executor of plant cell death. Current Opinion in Plant Biology. 2005;8:404-408. DOI: 10.1016/j.pbi.2005.05.016
  • Kumamaru T, Uemura Y, Inoue Y, Takemoto Y, Siddiqui SU, Ogawa M, et al. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed. Plant Cell Physiology. 2010;51:38-46. DOI: 10.1093/pcp/pcp165
  • Shimada T, Yamada K, Kataoka M, Nakaune S, Koumoto Y, Kuroyanagi M, et al. Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. The Journal of Biological Chemistry. 2003;278:32292-32299. DOI: 10.1074/jbc.M305740200
  • Hara-Nishimura I. Plant Legumain, asparaginyl endopeptidase, vacuolar processing enzyme. In: Barrett AJ, Rawlings ND, Woessner FJ, editors. Handbook of Proteolytic Enzymes. 3rd ed. London, UK: Academic Press; 2013. pp. 2314-2320. ISBN: 9780123822208
  • Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I. A cellular suicide strategy of plants: Vacuole-mediated cell death. Apoptosis. 2006;11:905-911. DOI: 10.1007/s10495-006-6601-1
  • Hatsugai N, Yamada K, Goto-Yamada S, Hara-Nishimura I. Vacuolar processing enzyme in plant programmed cell death. Frontiers in Plant Science. 2015;6:234. DOI: 10.3389/fpls.2015.00234
  • Radchuk V, Tran V, Radchuck R, Díaz-Mendoza M, Weier D, Fuchs J, et al. Vacuolar processing enzyme 4 contributes to maternal control of grain size in barley by executing programmed cell death in the pericarp. New Phytologist. 2018;218:1127-1142. DOI: 10.1111/nph.14729
  • Tran V, Weier D, Radchuk R, Thiel J, Radchuk V. Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS One. 2014;9:e109426. DOI: 10.1371/journal.pone.0109426
  • Li Z, Yue H, Xing D. MAP kinase 6-mediated activation of vacuolar processing enzyme modulates heat shock-induced programmed cell death in Arabidopsis. New Phytologist. 2012;195:85-96. DOI: 10.1111/j.1469-8137.2012.04131.x
  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, et al. Hara-Nishimura I. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science. 2004;305:855-858. DOI: 10.1126/science.1099859
  • Ge Y, Cai YM, Bonneau L, Rotari V, Danon A, McKenzie EA, et al. Inhibition of cathepsin-B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death Diffentiation. 2016;23:1493-1501. DOI: 10.1038/cdd.2016.34
  • Zhang H, Dong S, Wang M, Wang W, Song W, Dou X, et al. The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. Journal of Experimental Botany. 2010;61:3799-3812. DOI: 10.1093/jeb/erq189
  • Obara K, Kuriyama H, Fukuda H. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiology. 2001;125:615-626. DOI: 10.1104/pp.125.2.615
  • van Doorn WG et al. Morphological classification of plant cell deaths. Cell Death and Differentiation. 2011;18:1241-1246. DOI: 10.1038/cdd.2011.36
  • del Pozo O, Lam E. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Current Biology. 1998;8:1129-1132. DOI: 10.1016/S0960-9822(98)70469-5
  • Bozhkov PV, Suárez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodríguez-Nieto S, et al. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proceeding of the National Academic of Sciences, USA. 2005;102:14463-14468. DOI: 10.1073/pnas.o5o6948102
  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. Journal of Biological Chemistry. 2005;280:32914-32920. DOI: 10.1074/jbc.M504476200
  • Wang W, Cai J, Wang P, Tian S, Qin G. Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SIVPE3. Genome Biology. 2017;18:47. DOI: 10.1186/s13059-017-1178-2
  • Kuroyanagi M, Nishimura M, Hara-Nishimura I. Activation of Arabidopsis vacuolar processing enzyme by self-catalytic removal of an auto-inhibitory domain of the C-terminal propeptide. Plant and Cell Physiology. 2002;43:143-151. DOI: 10.1093/pcp/pcf035
  • Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, et al. Arabidopsis type I metacaspases control cell death. Science. 2010;330:1393-1397. DOI: 10.1126/science.1194980
  • Julian I, Gandullo J, Santos-Silva LK, Díaz I, Martínez M. Phylogenetically distant barley legumains have a role in both seed and vegetative tissues. Journal of Experimental Botany. 2013;64:2929-2941. DOI: 10.1093/jxb/ert132
  • Kumar D, Rampuria S, Singh NK, Shukla P, Kirti PB. Characterization of a vacuolar processing enzyme expressed in Arachis diogoi in resistance responses against late leaf spot pathogen, Phaeoisariopsis personata. Plant Molecular Biology. 2015;88:177-191. DOI: 10.1007/s11103-015-0318-x
  • Rojo E, Martín R, Carter C, Zouhar J, Pan S, Plotnikova J, et al. VPE exhibits a caspase-like activity that contributes to defense against pathogens. Current Biology. 2004;14:1897-1906. DOI: 10.1016/j.cub.2004.09.056
  • Albertini A, Simeoni F, Galbiati M, Bauer H, Tonelli C, Cominelli E. Involvement of the vacuolar processing enzyme ϒ-VPE in response of Arabidopsis thaliana to water stress. Biologia Plantarum. 2014;58:531-538. DOI: 10.1007/s10535-014-0417-6
  • Gruis DF, Schulze J, Jung R. Storage protein accumulation in the absence of the vacuolar processing enzyme family of cysteine proteases. Plant Cell. 2004;16:270-290. DOI: 10.1105/tpc.016378
  • Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, et al. A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of development. Plant Cell. 2005;17:876-887. DOI: 10.1105/tpc.104.026872
  • Endo A et al. Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis, and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds. Plant Cell Physiology. 2012;53:16-27. DOI: 10.1093/pcp/pcr171
  • Poncet V et al. The Amborella vacuolar processing enzyme family. Frontiers in Plant Science. 2015;6:618. DOI: 10.1074/jbc.M504476200
  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I. VPE is essential for mycotoxin-induced cell death in Arabidopsis thaliana. Journal of Biological Chemistry. 2005;280:32914-32920. DOI: 10.1074/jbc.M504476200
  • Christoff AP, Turchetto-Zolet AC, Margis R. Uncovering legumain genes in rice. Plant Science. 2014;216:100-109. DOI: 10.1016/j.plantsci.2013.11.005
  • Ingram GC. Dying to live: Cell elimination as a developmental strategy in angiosperm seeds. Journal of Experimental Botany. 2017;68:785-796. DOI: 10.1093/jxb/erw364
  • Lombardi L, Casani S, Ceccarelli N, Galleschi L, Picciarelli P, Lorenzi R. Programmed cell death of the nucellus during Sechium edule Sw. Seed development is associated with activation of caspase-like proteases. Journal of Expimental Botany. 2007;58:2949-2958. DOI: 10.1093/jxb/erm137
  • Lima NB, Trindade FG, da Cunha M, Oliveira AE, Topping J, Lindsey K, et al. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat. Plant, Cell and Environment. 2015;38:718-728. DOI: 10.1111/pce.12432
  • Wan L, Xia Q , Qiu X, Selvaraj G. Early stages of seed development in Brassica napus: A seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument. Plant Journal. 2002;30:1-10. DOI: 10.1046/j.1365-313X.2002.01262.x
  • Radchuk V, Weier D, Radchuk R, Weschke W, Weber H. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth. Journal of Experimental Botany. 2010;62:1217-1227. DOI: 10.1093/jxb/erq348
  • Zaina G, Morassutti C, de Amicis F, Fogher C, Marchetti S. Endonuclease genes up-regulated in tissues undergoing programmed cell death are expressed during male gametogenesis in barley. Gene. 2003;315:43-50. DOI: 10.1016/S0378-1119(03)00820-5
  • Moyano L, Correa MD, Favre LC, Rodriguez FS, Maldonado S, López-Fernández MP. Mobilization of reserves in the Araucaria angustifolia megagametophyte during germination. Frontiers in Plant Science. 2018;9:1275. DOI: 10.3389/fpls.2018.01275
  • Granot G, Morgenstern Y, Khana A, Rapp YG, Pesok A, Nevo E, et al. Internucleosomal DNA fragmentation in wild emmer wheat is catalyzed by S1-type endonucleases translocated to the nucleus upon induction of cell death. Biochimica et Biophysica Acta. 2015;1849:239-246. DOI: 10.1016/j.bbagrm.2014.12.003
  • Mittler R, Lam E. Characterization of nuclease activities and DNA fragmentation induced upon hypersensitive response cell death and mechanical stress. Plant Molecular Biology. 1997;34:209-221. DOI: 10.1023/A:1005868402827
  • Fath A, Bethke P, Londsale J, Meza-Romero R, Jones R. Programmed cell death in cereal aleurone. In: Lam E, Fukuda H, Greenberg J, editors. Programmed Cell Death in Higher Plants. Dordrecht: Springer; 2000. DOI: 10.1007/978-94-010-0934-8_2
  • Frendrich M, Hautegem V, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, et al. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Current Biology. 2014;24:931-940. DOI: 10.1016/j.cub.2014.03.025
  • Wredle U, Walles B, Hakman I. DNA fragmentation and nuclear degradation during programmed cell death in the suspensor and endosperm of Vicia faba. International Journal of Plant Sciences. 2001;162:1053-1063. DOI: 10.1086/321922
  • Domínguez F, Moreno J, Cejudo FJ. A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. The Journal of Biological Chemistry. 2004;279:11530-11536. DOI: 10.1074/jbc.M308082200
  • Brown PH, Ho THD. Barley aleurone layers secrete a nuclease in response to gibberellic acid. Plant Physiology. 1986;82:801-806. DOI: 10.1104/pp.82.3.801
  • Holstein SEH, Kobert B, Hillmer S, Brown PH, Ho THD, Robinson DG. Subcellular-localization of nuclease in barley aleurone. Physiologia Plantarum. 1991;83:255-265. DOI: 101111/j.1399-3054.1991.tb02150.x
  • Pérez-Amador MA, Abler ML, De Rocher EJ, Thompson DM, van Hoof A, LeBrasseur ND, et al. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiology. 2000;122:169-179. DOI: 10.1104/pp.122.1.169
  • Farage-Barhom S, Burd S, Sonego L, Mett A, Belausov E, Gidoni D, et al. Localization of the Arabidopsis senescence and cell death-associated BFN1 nuclease: From the ER to fragmented nuclei. Molecular Plant. 2011;4:1062-1073. DOI: 10.1093/mp/ssr045
  • Matallana-Ramirez LP, Rauf M, Farage-Barhorm S, Dortay H, Xue GI, Dröge-Laser W, et al. NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis. Molecular Plant. 2013;6:1438-1452. DOI: 10.1093/mp/sst012
  • Ito J, Fukuda H. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell. 2002;14:3201-3211. DOI: 10.1105/tpc.006411
  • Sakamoto W, Takami T. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. Journal of Experimental Botany. 2014;65:3835-3843. DOI: 10.1093/jxb/eru091