Some Contributions About an Implicit Discretization of a 1D Inviscid Model for River Flows

  1. Muñoz-Sola, R.
  2. Vilar, M. Ángel
  3. de Castro, A. Bermúdez
  4. Rodríguez, C.
Libro:
Hyperbolic Problems: Theory, Numerics, Applications

ISBN: 9783540757115

Año de publicación: 2008

Páginas: 765-773

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-540-75712-2_78 WoS: WOS:000254106200078 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Abbot, M.B.: Computational Hydraulics: Elements of the theory of free surface flows. Pitman (1979)
  • Bermúdez, A., Moreno, C.: Duality methods for solving variational inequalities. Comp. and Maths. with Appls., 7, 43–58 (1981)
  • Bermúdez, A., Muñoz-Sola, R., Rodríguez, C., Vilar, M.A.: Theoretical and numerical study of an implicit discretization of a 1D inviscid model for river flows. Math. Models Methods Appl. Sci., 16, 375–395 (2006)
  • Bercovier, M., Pironneau, O., Sastri, V.: Finite elements and characteristics for some parabolic-hyperbolic problems. Appl. Math. Modelling.,7, 89–96 (1983)
  • Klingenberg, C., Yung-guang Lu.: Existence of solutions to hyperbolic conservation laws with a source. Commun. Math. Phys., 187, 327–340 (1997)
  • Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod (1969)
  • Showalter, R.E.: Monotone operators in Banach space and nonlinear partial differential equations. American Mathematical Society. Series: Mathematical surveys and monographs, Vol. 49 (1997)