Some Contributions About an Implicit Discretization of a 1D Inviscid Model for River Flows
Libro:
Hyperbolic Problems: Theory, Numerics, Applications
ISBN: 9783540757115
Año de publicación: 2008
Páginas: 765-773
Tipo: Capítulo de Libro
DOI:
10.1007/978-3-540-75712-2_78
WoS:
WOS:000254106200078
GOOGLE SCHOLAR
lock_openAcceso abierto editor
Referencias bibliográficas
- Abbot, M.B.: Computational Hydraulics: Elements of the theory of free surface flows. Pitman (1979)
- Bermúdez, A., Moreno, C.: Duality methods for solving variational inequalities. Comp. and Maths. with Appls., 7, 43–58 (1981)
- Bermúdez, A., Muñoz-Sola, R., Rodríguez, C., Vilar, M.A.: Theoretical and numerical study of an implicit discretization of a 1D inviscid model for river flows. Math. Models Methods Appl. Sci., 16, 375–395 (2006)
- Bercovier, M., Pironneau, O., Sastri, V.: Finite elements and characteristics for some parabolic-hyperbolic problems. Appl. Math. Modelling.,7, 89–96 (1983)
- Klingenberg, C., Yung-guang Lu.: Existence of solutions to hyperbolic conservation laws with a source. Commun. Math. Phys., 187, 327–340 (1997)
- Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod (1969)
- Showalter, R.E.: Monotone operators in Banach space and nonlinear partial differential equations. American Mathematical Society. Series: Mathematical surveys and monographs, Vol. 49 (1997)