Impact of thermal shock on forest soils affected by fires of different severity and recurrence

  1. Lombao, Alba
  2. Barreiro, Ana
  3. Cancelo-González, Javier
  4. Martín, Ángela
  5. Díaz-Raviña, Montserrat
Journal:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Year of publication: 2015

Volume: 5

Issue: 2

Pages: 165-179

Type: Article

DOI: 10.3232/SJSS.2015.V5.N2.06 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Spanish Journal of Soil Science: SJSS

Abstract

Thermal treatments in the laboratory were conducted using unburned and burned samples of two soils affected by low- or high severity fires in order to study their impact on forests ecosystems with different fire regimes (severity, recurrence). Soils samples were heated in a furnace for 15 minutes at 50 ºC, 75 ºC, 100 ºC, 125 ºC, 150 ºC, 175 ºC, 200 ºC and 300 ºC to simulate different fire intensities; the process was repeated after a 1 month incubation of the burned, rewetted samples in order to simulate fire recurrence. The soil temperature was measured with thermocouples at the surface and 1 cm depth. The maximum temperature reached (Tmax) and the amount of heat supplied to the samples (degree-hour, DH) were calculated from the temperature-time curves. A total of 128 temperature-time curves (4 soil field samples x 8 heating temperatures x 2 depths x 2 successive heat treatments) were analyzed and the estimation of several soil physical and chemical properties (color, moisture content, pH, total C, total N, soluble C) was carried out in the different soil treatments. High-severity burning provoked significant changes on these physical and chemical properties, whereas slight modifications or even no changes were due to low-severity burning or soil heating under laboratory conditions. The thermal properties exhibited a higher sensitivity for the detection of the fire regime impact than the physical and chemical properties. The results showed that the temperature-time curves and derived parameters (slope, Tmax, DH) can be successfully used to quantify the impact of thermal shocks at low and high temperatures and to evaluate the effect of fire/heating recurrence on forests ecosystems.

Bibliographic References

  • Almendros G, González-Vila FJ. 2012. Wildfires, soil carbon balance and resilient organic matter in Mediterranean ecosystems. A review. Spanish J. Soil Sci. 2:8-33.
  • Badía-Villas D, González-Pérez JA, Aznar JM, Arjona-Gracia B, Clara Martí-Dalmau C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma 213:400-407.
  • Bárcenas-Moreno G, Bååth E. 2009. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol. Biochem. 41:2517-2526.
  • Barreiro A, Fontúrbel MT, Lombao A, Martín A, Vega JA, Fernández C, Carballas T, Díaz-Raviña M. 2014. Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments. Catena (in press). http://dx.doi.org/10.1016/j.catena.2014.07.011.
  • Barreiro A, Martín T, Carballas T, Díaz-Raviña M. 2010. Response of soil microbial communities to fire and fire-fighting chemicals. Sci. Tot. Environ. 408:6172-6176.
  • Bento-Gonçalvez A, Vieira A, Úbeda X, Martín D. 2012. Fire and soils: key concepts and recent advances. Geoderma 191:3-15.
  • Busse MD, Hubbert KR, Fiddler GO, Shestak CJ, Powers RF. 2005. Lethal soil temperatures during burning of masticated forest residues. Int J Wildland Fire 14:267-276.
  • Campbell GS, Jungbaver JD Jr, Bristow KL, Hungerford RD. 1995. Soil temperature and water content beneath a surface fire. Soil Sci. 159: 363-374.
  • Cancelo-González J, Cachaldora C, Díaz-Fierros F, Prieto B. 2014. Colourimetric variations in burnt granitic forest in relation to fire severity. Ecol. Indic. 46:92-100.
  • Cancelo-González J, Prieto DM, Díaz-Fierros F, Barral MT. 2015. Fe and Al leaching in soils under laboratory-controlled burns. Spanish J. Soil Sci. 5(3):83-97.
  • Cancelo-González J, Rial-Rivas ME, Barros N, Díaz-Fierros F. 2012. Assessment of the impact of soil heating on soil cations using the degree-hours method. Spanish J. Soil Sci. 2(3):32-44.
  • Carballas T. 2014. El suelo y los incendios forestales en Galicia. Santiago de Compostela: NINO.
  • Carballas T, Martín A, Díaz-Raviña M. 2009. Efecto de los incendios forestales sobre los suelos de Galicia. En: Cerdá A, Mataix-Solera J, editores. Efecto de los incendios forestales sobre los suelos en España. Valencia: Cátedra Divulgación de la Ciencia. Universitat de València. FUEGORED. p. 269-301.
  • Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologie 143:1-10.
  • Díaz-Raviña M, Benito E, Carballas T, Fontúrbel MT, Vega JA. 2010a. Research and post-fire management: soil protection and rehabilitation techniques for burnt soil ecosystems. Santiago de Compostela: Andavira.
  • Díaz-Raviña M, Fontúrbel MT, Guerrero C, Martín A, Carballas T. 2010b. Determinación de propiedades bioquímicas y microbiológicas de suelos quemados. In: Cerdá A, Jordán A, editors. Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales. FUEGORED. Valencia: Cátedra de Divulgación de la Ciencia. Universidad de Valencia. p. 465-497.
  • Díaz-Raviña M, Martín A, Barreiro A, Lombao A, Iglesias L, Díaz-Fierros F, Carballas T. 2012. Mulching and seeding treatments for post-fire soil stabilisation in NW Spain: short-term effects and effectiveness. Geoderma 191:31-39.
  • Díaz-Raviña M, Prieto A, Acea MJ, Carballas T. 1992. Fumigation-extraction method to estimate microbial biomass in heated soils. Soil Biol. Biochem. 24:259-264.
  • Fernández I, Cabaneiro A, Carballas T. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soils and comparison with laboratory soil heating. Soil Biol. Biochem. 29:1-11.
  • Eugenio M, Loret F, Alcañiz JM. 2006. Regional patterns of fire recurrence effects on calcareous soils of Mediterranean Pinus Halepensis communities. For. Ecol. Manage. 221:313-318.
  • Ferran A, Delitti W, Vallejo VR. 2005. Effects of fire recurrence in Quercus coccifera L. scrublands of the Valencia region (Spain): II. Plant and soil nutrients. Plant Ecol. 177:71-83.
  • Fontúrbel MT, Barreiro A, Vega JA, Lombao A, Martín A, Jiménez E, Carballas T, Fernández C. 2012. Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma 191:51-60.
  • Gómez-Rey MX, Couto-Vázquez A, García-Marco S, González-Prieto SJ. 2013a. Impact of fire and post-fire management techniques on soil chemical properties. Geoderma 195-196:155-164.
  • Iverson LR, Hutchinson TF. 2002. Soil temperature and moisture fluctuations during and after prescribed fire in mixed-oak forest, USA. Nat. Area. J. 22:296-304.
  • Keeley JE. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18:116-126.
  • Ketterings QM, Bingham JM. 2000. Soil color as an indicator of slash-and-burn severity and soil fertility in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64:1826-1833.
  • Lombao A, Barreiro A, Carballas T, Fontúrbel MT, Martín A, Vega JA, Fernández C, Díaz-Raviña M. 2014. Changes in soil properties after a wildfire in Fragas do Eume natural Park (Galicia, NW Spain). Catena (in press). doi:10.1016/j.catena.2014.08.007.
  • Lombao A, Díaz-Raviña M, Martín A, Barreiro A, Fontúrbel M, Vega JA, Fernández C, Carballas T. 2015. Influence of straw mulch application on the properties of a soil affected by a forest wildfire. Spanish J. Soil Sci. 5(3):26-40.
  • Marcos E, Tárrega R., Luis E. 2007. Changes in a Humic Cambisol heated (100-500ºC) under laboratory conditions: the significance of heating time. Geoderma 138:237-243.
  • Martín A, Díaz-Raviña M, Carballas T. 2009. Evolution of composition and content of soil carbohydrates following forest wildfires. Biol. Fertil. Soils 45:511-520.
  • Martín A, Díaz-Raviña M, Carballas T. 2012. Short- and medium term evolution of soil properties in Atlantic forests ecosystems affected by wildfires. Land Degrad. Dev. 23:427-439.
  • Massman WJ, Frank JM, Reisch B. 2008. Long-term impacts of prescribed burns on soil thermal conductivity and soil heating at a Colorado Rocky Mountain site: a data/model fusion study. Int. J. Wildland Fire 17:131-146.
  • Massman WJ, Frank JM. 2004. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor. Int. J. Wildland Fire 13:427-222.
  • Massman WJ, Frank JM, Reisch, NB. 2008. Long-term impacts of prescribed burns on soil thermal conductivity and soil heating at a Colorado Rocky Mountain site: a data/model fusión study. Int. J. Wildland Fire 17:131-146.
  • Mendes-Lopes JMC, Venture JMP, Amaral JMP. 2003. Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of Pinus pinaster needles. Int J Wildland Fires. 12:67-84.
  • Molina M, Llinares JV. 2001. Temperature-time curves at the soil surface in maquis summer fires. Int J Wildland Fire 10:45-52.
  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecol. Manage. 122:51-71.
  • Prieto-Fernández A, Acea MJ, Carballas T. 1998. Soil microbial and extractable C and N after wildfire. Biol. Fertil. Soils 27:132-142.
  • Prokushkin AS, Tokareva IV. 2007. The influence of heating on organic matter of forest litters and soils under experimental conditions. Soil Chem. 40:628-635.
  • Rein G, Cleaver N, Ashton C, Pironi P, Torero JL. 2008. The severity of smouldering peat fires and damage to the forest soil. Catena 78:304-306.
  • Rubio CM, Úbeda X, Ferrer, F. 2012. Response of the thermal conductivity as a funcition of wáter content of a burnt Mediterranean loam soil. Open J. Soil Sci. 2:1-6.
  • Shakesby RA. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 105:71-100.
  • Terefe T, Mariscal-Sancho I, Peregrina F, Espejo R. 2008. Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma 143: 273-280.
  • Thomaz E, Fachin P. 2014. Effects of heating on soil physical properties by using realistic peak temperature gradients. Geoderma 230-231: 243-249.
  • Villar MC, Petrikova V, Díaz-Raviña M, Carballas T. 2014. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma 122: 73-82.
  • Vega JA, Fontúrbel T, Fernández C, Arellano A, Díaz-Raviña M, Carballas T, Martín A, González-Prieto S, Merino A, Benito E. 2013a. Acciones urgentes contra la erosión en áreas forestales quemadas. Guía para su planificación en Galicia. Santiago de Compostela: Andavira.
  • Vega JA, Fontúrbel T, Merino A, Fernández C, Ferreiro A, Jiménez E. 2013b. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant Soil 369:73-91.
  • Verdes PV, Salgado J. 2011. Changes induced in the thermal properties of Galizian soils by the heating in laboratory conditions. Estimation of the soil temperature during a wildfire. J Therm Anal Calorim 104:177-186.