Effect of limonene on anaerobic digestion of citrus waste and pretreatments for its improvement
- Ruiz Fuertes, María Begoña
- Xavier Flotats Ripoll Director
- Antonio Eduardo Palomares Gimeno Director
Universidade de defensa: Universitat Politècnica de València
Fecha de defensa: 27 de novembro de 2015
- José Ferrer Polo Presidente/a
- Marta Carballa Arcos Secretaria
- Elena Marañón Maison Vogal
Tipo: Tese
Resumo
Anaerobic digestion is a sustainable and technically sound way to valorise citrus waste if the inhibitory effect of the citrus essential oil (CEO) is controlled. Several strategies have been proposed to overcome these difficulties: keeping the organic loading rate (OLR) in low values to avoid excess dosage of inhibitor, supplementing the citrus waste with nutrient and buffering solutions or pre-treating the citrus waste in order to reduce the CEO concentration, either by recovery or by degradation of the CEO. Nevertheless, although some of them have been proven successful in recovering/degrading the CEO, none of them has been applied at full scale operation. The main objective of this thesis is to study the effect of the limonene (the main component of CEO) on the anaerobic digestion of citrus waste and to evaluate different strategies to improve this process. In a first approach to the problem, the effect and dynamics of the limonene in the anaerobic digestion process is studied in batch mode. The biochemical methane potential of several citrus waste types was assessed. The inhibitory concentration of limonene for the anaerobic digestion process was estimated also, observing a certain adaptation degree. Different strategies to avoid inhibition of the anaerobic digestion by limonene were studied in batch mode, namely biological treatment by fungi of the Penicillium genus, steam distillation and ethanol extraction. All treatments decreased the limonene concentration in the orange peel, with different efficiencies. Methane potential and production rate in the batch anaerobic digestion of the pretreated orange peel were not affected by the biological treatment, but an increase was observed after steam distillation and also after ethanol extraction. This effect was attributed to the removal of minority compounds of the CEO. Energy balance was negative for steam distillation and positive for the other two tested strategies. Continuous anaerobic co-digestion experiments of orange and mandarin peel with chicken and pig manure allowed observing the importance of the limonene dosage on the inhibitory effect. Systemic inhibition was observed in the mixture with higher limonene concentration, with symptoms of inhibition on methanogenesis, protein hydrolysis pathway, sulphate reduction and acetogenesis. The degradation of the limonene produced inhibitory compounds as well, causing persistent inhibition effects even after almost complete limonene degradation. Continuous anaerobic co-digestion of pretreated citrus waste with cow manure allowed for stable processes when the pretreatment was able to remove the limonene with high efficiency and without producing other inhibitory compounds (such as ¿-terpineol in the biological treatment). Thus, the pretreatments allowing for better results in terms of process stability were mechanical removal of the flavedo and ethanol extraction of the limonene. The anaerobic digestion is able to degrade the limonene, but its by-products can be even more inhibitory than the limonene itself. Therefore, it is concluded that to apply CEO recovery strategies before anaerobic digestion is recommended, since these could possibly the valorization of CEO as added value product and to increase biogas production.