Ruled hypersurfaces and homogeneous submanifolds in semi-Riemannian manifolds

  1. Pérez Barral, Olga
unter der Leitung von:
  1. José Carlos Díaz-Ramos Doktorvater
  2. Miguel Domínguez-Vázquez Doktorvater

Universität der Verteidigung: Universidade de Santiago de Compostela

Fecha de defensa: 11 von Dezember von 2020

Gericht:
  1. Luis Hernández Lamoneda Präsident/in
  2. José Antonio Oubiña Galiñanes Sekretär
  3. Alma Luisa Albujer Brotons Vocal
Fachbereiche:
  1. Departamento de Matemáticas

Art: Dissertation

Zusammenfassung

The notion of symmetry can be defined in a rigorous way in terms of group theory. In the setting of semi-Riemannian geometry, the natural group to consider is the isometry group. In this thesis we study some specific types of submanifolds of semi-Riemannian manifolds from the viewpoint of their symmetries. On the one hand, we focus on the simplest example of Lorentzian manifold, the Minkowski spacetime, where we investigate cohomogeneity one actions. On the other hand, we turn our attention to nonflat complex space forms, where we investigate ruled hypersurfaces satisfying some additional geometric properties and we also derive a classification of homogeneous CR submanifolds.