Establecimiento de líneas argumentativas en la resolución de un problema con enzimas

  1. Varela Caamiña, María Peregrina 1
  2. Blanco Anaya, Paloma 1
  3. Díaz de Bustamante, Joaquí 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Ano de publicación: 2020

Volume: 38

Número: 2

Páxinas: 163-180

Tipo: Artigo

DOI: 10.5565/REV/ENSCIENCIAS.2823 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Resumo

This study analyses the argumentative lines followed by students from 10th grade during the resolution of an open problem, in which they must explain the reasons why the enzymatic reactions stop. The lines of reasoning as proposed by Kelly, Regev and Prothero (2008) are taken as a reference to develop the argumentative lines, which are understood as a succession of phases from the data to the conclusion. The results show that each group develops two argumentative lines, which integrate theoretical rather than empirical evidence. The use of inappropriate evidence implies that some of the argumentative lines are considered inadequate, since students don’t answer why enzyme reactions stop. The interpretative feature is one of the limitations of argumentative lines; however, they allow the examination of argumentative process followed by students.

Información de financiamento

A los participantes del estudio. Agradecimientos a la financiación de FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación- Proyecto ESPIGA, referencia PGC2018-096581-B-C22.

Referencias bibliográficas

  • Ageitos, N., Puig, B. y Calvo-Peña, X. (2017). Trabajar genética y enfermedades en secundaria integrando la modelización y la argumentación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(1), 86-97. DOI: 10498/18848 http://hdl.handle.net/10498/18848
  • Archila, P. A. (2012). La investigación en argumentación y sus implicaciones en la formación inicial de profesores de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(3), 361-375. DOI: 10498/14864 http://hdl.handle.net/10498/14864
  • Bennett, J., Hogarth, S., Lubben, F., Campbell, B. y Robinson, A. (2010). Talking science: The research evidence on the use of small group discussions in science teaching. International Journal of Science Education, 32(1), 69-95. https://doi.org/10.1080/09500690802713507
  • Berland, L. K. y Reiser, B. J. (2009). Making sense of argumentation and explanations. Science Education, 93(1), 26-55. https://doi.org/10.1002/sce.20286
  • Blanco Anaya, P. y Díaz Bustamante, J. (2014). Argumentación y uso de pruebas: realización de inferencias sobre una secuencia de icnitas. Enseñanza de las Ciencias, 32(2), 35-52. https://doi.org/10.5565/rev/ensciencias.1009
  • Buitrago, Á. R., Mejía, N. M. y Hernández, R. (2013). La argumentación: de la retórica a la enseñanza de las ciencias. Revista Innovación Educativa, 13(63), 17-40.
  • Ceberio, M., Almudí, J. M. y Zubimendi, J. L. (2014). Análisis de los argumentos elaborados por estudiantes de cursos introductorios de Física universitaria ante situaciones problemáticas. Enseñanza de las Ciencias, 32(3), 71-88. https://doi.org/10.5565/rev/ensciencias.1112
  • Crujeiras Pérez, B. y Blanco Anaya, P. (2017). Trabajar la argumentación a través de la indagación en el laboratorio. ¿Será Limpics una estafa? Aula de Innovación Educativa, (260), 27-30.
  • Díaz de Bustamante, J. y Jiménez Aleixandre, M. P. (1999). Aprender ciencias, hacer ciencias: resolver problemas en clase. Alambique. Didáctica de las Ciencias Experimentales, 20, 9-16.
  • Driver, R., Newton, P. y Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. 3.0.CO;2-A” target=“_blank”>https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  • Erduran, S., Simon, S. y Osborne, J. (2004). TAPping into argumentation: developments in the use of Toulmin’s Argument Pattern for studying science discourse. Science Education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  • Evagorou, M. y Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209-237. https://doi.org/10.1002/tea.21076
  • Gee, J. P. y Handford, M. (eds.) (2012). The Routledge Handbook of Discourse Analysis. Nueva York: Routdledge.
  • Henao, B. L. y Stipcich, M. S. (2008). Educación en ciencias y argumentación: la perspectiva de Toulmin como posible respuesta a las demandas y desafíos contemporáneos para la enseñanza de las Ciencias Experimentales. Revista Electrónica de Enseñanza de las Ciencias, 7(1), 47-62.
  • Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142. https://doi.org/10.1080/03057269308560022
  • Hug, B. y McNeill, K. L. (2008). Use of First-hand and Second-hand Data in Science: Does data type influence classroom conversations? International Journal of Science Education, 30(13), 1725-1751. https://doi.org/10.1080/09500690701506945
  • Jiménez Aleixandre, M. P. (2010). 10 Ideas Clave. Competencias en argumentación y uso de pruebas. Barcelona: Graó.
  • Jiménez-Aleixandre, M. P. y Brocos, P. (2015). Desafios metodológicos na pesquisa da argumentação em ensino de ciências. Ensaio Pesquisa em Educação em Ciências (Belo Horizonte), 17(especial), 139-159.
  • Jiménez-Aleixandre, M. P., Bugallo Rodriguez, A. y Duschl, R. A. (2000). «Doing the lesson» or «Doing science»: Argument in high school genetics. Science Education, 84(6), 757-792. 3.0.CO;2-F” target=“_blank”>https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  • Jiménez Aleixandre, M. P. y Díaz de Bustamante, J. (2003). Discurso de aula y argumentación en la clase de ciencias: cuestiones teóricas y metodológicas. Enseñanza de las Ciencias, 21(3), 359-378.
  • Jiménez-Aleixandre, M. P. y Puig, B. (2011). The role of justifications in integrating evidence in arguments: Making sense of gene expression. Comunicación presentada en el congreso de ESERA. Lyon (Francia).
  • Kelly, G. J. (2008). Inquiry, activity and epistemic practice. En R. A. Duschl y R. E. Grandy (Eds.), Teaching Scientific Inquiry: Recommendations for Research and Implementation (pp. 99-100). Róterdam: Sense Publisers.
  • Kelly, G. J., Druker S. y Chen, C. (1998). Students’ reasoning about electricity: combining performance assessment with argumentation analysis. International Journal of Science Education, 20(7), 849-871. https://doi.org/10.1080/0950069980200707
  • Kelly, G. J., Regev, J. y Prothero, W. (2008). Analysis of lines of reasoning in written argumentation. En S. Erduran y M. P. Jiménez-Aleixandre (Eds.), Argumentation in Science Education: Perspectives from Classroom-Based Research (pp. 137-159). Dordrecht: Springer.
  • Kelly, G. J. y Takao, A. (2002). Epistemic levels in argument: an analysis of university oceanography students’ use of evidence in writing. Science Education, 83(3), 115-130. https://doi.org/10.1002/sce.10024
  • Koslowski, B., Marasia, J., Chelenza, M. y Dublin, R. (2008). Information becomes evidence when an explanation can incorporate it into a causal framework. Cognitive Development, 23(4), 472-487. http://dx.doi.org/10.1016/j.cogdev.2008.09.007
  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337. https://doi.org/10.1002/sce.3730770306
  • Ley Orgánica 2/2006, del 3 de mayo, de Educación (LOE). BOE del 4 de mayo de 2006, 106, 17158-17207.
  • McNeill, K. L. y Krajcik, J. (2008). Inquiry and scientific explanations: Helping students use evidence and reasoning. En J. Luft, R. Bell, y J. Gess-Newsome (Eds.), Science as inquiry in the secondary setting (pp. 121-134). Arlington, VA: National Science Teachers Association Press.
  • Mendonça, P. C. C. y Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2407-2434. https://doi.org/10.1080/09500693.2013.811615
  • National Research Council (NRC) (2012). A framework for K-12 Science Education: practices, crosscutting concepts and core ideas. Washington DC: National Academy Press.
  • OCDE (2019). PISA 2018 Assessment and Analytical Framework. París: PISA, OECD Publishing. https://doi.org/10.1787/b25efab8-en
  • Osborne, J. (2011). Science teaching methods: a rationale for practices. School Science Review, 93(343), 93-103.
  • Sadler, T. D. y Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71-93. https://doi.org/10.1002/sce.20023
  • Sandoval, W. A. y Millwood, K. A. (2008). What Can Argumentation Tell Us About Epistemology? En S. Erduran y M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: perspectives from classroom-based research (pp. 81-98). Dordrecht: Springer.
  • Stake, R. E. (2005). Investigación con estudio de casos. Madrid: Morata.
  • Toulmin, S. (1958). The uses of argument. Cambridge: University Press.
  • Walker, J. P., Sampson, V. y Zimmerman, C. O. (2011). Argument-driven inquiry: An introduction to a new instructional model for use in undergraduate chemistry labs. Journal of Chemical Education, 88(8), 1048-1056. https://doi.org/10.1021/ed100622h
  • Yin, R. K. (2003). Case Study Research: Design and Methods (3.ª ed.). Londres: SAGE Publications.
  • Zohar, A. y Nemet, F. (2002). Fostering students’ argumentation skills through bioethical dilemmas in genetics. Journal of Research in Science Teaching, 39(1), 35-62. https://doi.org/10.1002/tea.10008