Hilary Putnam on the philosophy of logic and mathematics

  1. Sagüillo Fernández-Vega, José Miguel
Revista:
Theoria: an international journal for theory, history and foundations of science

ISSN: 0495-4548

Ano de publicación: 2018

Volume: 33

Número: 2

Páxinas: 183-200

Tipo: Artigo

DOI: 10.1387/THEORIA.17626 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Theoria: an international journal for theory, history and foundations of science

Resumo

Este artículo estudia la concepción de Putnam de verdad lógica que emana de su visión de la práctica de la matemática y de su ontología. Philosophy of Logic, el libro de 1971 de Putnam surge un año más tarde que el homónimo de Quine. En la primera sección, se comparan estas dos Filosofías de la Lógica que ejemplifican los puntos de vista del realismo y del nominalismo de modo conspicuo. La siguiente sección examina el enfoque de la modalidad de Putnam, que va desde la cualificación modal de su caracterización intuitiva de validez lógica a su concepción oficial generalizada no-modal conjuntista de segundo orden. La tercera sección subraya el modo en que «la matemática como lógica modal» de Putnam se distancia del «Platonism a regañadientes» de Quine. Aquí se sugiere una visión complementaria del Platonism y del modalismo, los cuales, aunque quizás intercambiables, se muestran subyaciendo a los diferentes estadios del proceso de investigación de una práctica de la matemática rica y dinámica. La sección final, más especulativa, conjetura algunas razones de la persistente concepción platónica implícita en la práctica del matemático.

Información de financiamento

* I am grateful to the participants in the workshop “Updating indispensabilities: Hilary Putnam in Me-moriam” held in Santiago de Compostela at the end of November 2016 for discussion that followed my presentation. I am grateful to Concha Martínez, Matteo Plebani, Otávio Bueno, and John Corco-ran for comments on a previous version. My special thanks also go to two anonymous referees of Theo-ria for their insightful suggestions that significantly improved the present version. One report was es-pecially constructive, dialogical and detailed. 1 The research for this paper was supported by the Spanish Ministry of Economy and Competitivity and FEDER via the research projects FFI 2013-41415-P and FFI2017-82534-P.

Financiadores

Referencias bibliográficas

  • Boolos, George. 1975. On second-order logic. The Journal of Philosophy 72/16: 509-27.
  • Boolos, George. 1998. Must we believe in set theory. Included in Gila Sher and Richard Tieszen, eds., Between logic and intuition. Essays in honor of Charles Parsons, 257-68. Cambridge: Cambridge University Press.
  • Bueno, Otávio. 2013. Putnam and the indispensability of mathematics. Principia 17/2: 217-34.
  • Burgess, John P. and Gideon Rosen. 1997. A Subject with no object: Strategies for nominalistic interpretation of mathematics. Oxford: Oxford University Press.
  • Colyvan, Mark. 2004. Indispensability arguments in the philosophy of mathematics. In Edward Zalta, ed., The Stanford Encyclopedia of Philosophy. http//Plato.Stanford.edu/archives/fall2005/entries/mathphilindis/.
  • Corcoran, John. 1972a. Conceptual structure of classical logic. Philosophy and Phenomenological Research 33: 25-47.
  • Corcoran, John. 1972b. Review of Quine 1970. Philosophy of Science 39: 97-9.
  • Corcoran, John. 1973a. Review of Putnam 1971. Philosophy of Science 40: 131-33.
  • Corcoran, John. 1973b. Gaps between logical theory and mathematical practice. In Mario Bunge, ed., Methodological unity of science, 23-50. Reidel Publishing Co.: Dordrecht.
  • Corcoran, John. 1979. Review of Quine 1970, sixth printing. Mathematical Reviews 57: 1237-8.
  • Corcoran, John. 1992. Unprovability and undefinability. In Denis Miéville, ed., Travaux de logic 7. Kurt Gödel: Actes du colloque. 37-46. Neuchatel: Université de Neuchatel.
  • Corcoran and José M. Sagüillo. 2017. Platonism and logicism. Forthcoming.
  • Eder, Günther. 2016. Boolos and the metamathematics of Quine’s definitions of logical truth and consequence. History and Philosophy of Logic 37/2: 170-93.
  • Edwards, Paul. 1967/72 ed. Encyclopedia of philosophy. 8 volumes. New York and London: Macmillan Publishing Co. and the Free Press.
  • Etchemendy, John. 1990. The concept of logical consequence. Cambridge, Massachusetts: Harvard University Press.
  • Gödel, Kurt. 1944/64. Russell’s mathematical logic. In Paul Benacerraf and Hilary Putnam eds., Philosophy of mathematics, 447-69. Cambridge, New York, Port Chester, Melbourne and Sydney: Cambridge University Press.
  • Gödel, Kurt. 1947/89. What is Cantor’s continuum problem? In Paul Benacerraf and Hilary Putnam eds., Philosophy of Mathematics, 470-85. Cambridge, New York, Port Chester, Melbourne and Sydney: Cambridge University Press.
  • Hellman, Geoffrey. 1989. Mathematics without numbers. Towards a modal structural interpretation. Oxford: Clarendon Press.
  • Kreisel, Georg. 1967. Informal rigour and completeness proofs. Studies in Logic and the Foundations of Mathematics 47: 138-71.
  • Liggins, David. 2008. Quine, Putnam, and the ‘Quine-Putnam’ indispensability argument’ Erkenntnis 68/1: 113-27.
  • MacBride, Fraser. 2005. Structuralism reconsidered. In Stewart Shapiro ed., The Oxford Handbook of Philosophy of Mathematics and Logic, 563-89. Oxford: Oxford University Press.
  • Maddy, Penelope. 1980. Perception and mathematical intuition. The Philosophical Review 89/2: 163-196.
  • Maddy, Penelope. 1992. Indispensability and practice. Journal of Philosophy 89: 275-89.
  • Maddy, Penelope. 2005. Three forms of naturalism. In Stewart Shapiro, ed. 2005. The Oxford handbook of philosophy of mathematics and logic,, 437-459. Oxford: Oxford University Press.
  • Parsons, Charles. 1967/72. Mathematics, foundations of. In Paul Edwards, ed. Encyclopedia of Philosophy. 8 volumes. New York and London: Macmillan Publishing Co. and the Free Press.
  • Parsons, Charles. 1979-80. Mathematical intuition. In Wilbur D. Hart, ed., The Philosophy of Mathematics, 95-113. Oxford: Oxford University Press.
  • Parsons, Charles. 1990. The structuralist view of mathematical objects. In Wilbur D. Hart ed, The Philosophy of Mathematics, 272-309. Oxford: Oxford University Press.
  • Pieri, Mario. 1908. La geometría elementare instituita sulle nozione di “punto” e “sfera”. Memoria di Matematica e di Física della Società Italiana delle Scienze. Serie Terza, xv: 345-450.
  • Putnam, Hilary. 1967a. The thesis that mathematics is logic. In Mathematics, matter and method. Philosophical papers, Vol. I. Second Edition, 12-42. Cambridge: Cambridge University Press.
  • Putnam, Hilary. 1967b. Mathematics without foundation. In Mathematics, matter and method. Philosophical papers, Vol. I. Second Edition, 43-59. Cambridge: Cambridge University Press.
  • Putnam, Hilary. 1968. The logic of quantum mechanics. In Mathematics, matter and method. Philosophical papers, Vol. I. Second Edition, 174-97. Cambridge: Cambridge University Press.
  • Putnam, Hilary. 1971. Philosophy of Logic. London: George Allen & Unwin LTD.
  • Putnam, Hilary. 1979/85a. Truth and necessity in mathematics. In Mathematics, matter and method. Philosophical papers, Vol. I. Second Edition, 1-11. Cambridge: Cambridge University Press.
  • Putnam, Hilary. 1979/85b. What is mathematical truth. In Mathematics, matter and method. Philosophical papers, Vol. I. Second Edition, 60-78. Cambridge: Cambridge University Press.
  • Putnam, Hilary. 1994. Philosophy of mathematics: Why nothing works. In John Conant, ed., Words and life. Hilary Putnam, 499-512. Cambridge, Mass. and London: Harvard University Press.
  • Putnam, Hilary. 2012. Indispensability arguments in the philosophy of mathematics. In De Caro, Mario and David Macarthur, eds., Philosophy in an age of science: Physics, mathematics and skepticism, 181-201. Cambridge Mass.: Harvard University Press.
  • Quine, Willard. V. 1950/82. Methods of logic. Cambridge, Mass.: Harvard University Press.
  • Quine, Willard. V. 1953/80. On what there is. In From a logical point of view. Second edition, 1-19. Cambridge, Mass. and London: Harvard University Press.
  • Quine, Willard. V. 1954. Interpretations of sets of conditions. Journal of Symbolic Logic 19/2: 97-102. Reprinted in Quine 1966/95. Selected logic papers. Cambridge, Mass.: Harvard University Press.
  • Quine, Willard. V. 1960/89. Word & object. Cambridge, Mass.: The M.I.T. Press.
  • Quine, Willard. V. 1969. Ontological relativity and other essays. New York: Columbia University Press.
  • Quine, Willard. V. 1970/86. Philosophy of logic. Second edition. Cambridge, Mass. and London: Harvard University Press.
  • Quine, Willard. V. 1981. Theories and things. Cambridge, Mass. and London: Harvard University Press.
  • Resnik, Michael. 2005. Quine and the Web of Belief. In Stewart Shapiro ed., The Oxford handbook of philosophy of mathematics and logic, 412-36. Oxford University Press.
  • Russell, Bertrand. 1919/93. Introduction to mathematical philosophy. New York: Dover.
  • Sagüillo, José M. 1997. Logical consequence revisited. The Bulletin of Symbolic Logic, 3: 216-41.
  • Sagüillo, José M. 2000. Domains of science, universes of Discourse and omega arguments. History and Philosophy of Logic 20: 267-90.
  • Sagüillo, José M. 2002. Quine on logical truth and consequence. Agora. Papeles de filosofía 20: 139-56.
  • Shapiro, Stewart. 1989. Logic, ontology, mathematical practice. Synthese 79: 13-50.
  • Shapiro, Stewart. 1997. Philosophy of mathematics: Structure and ontology. Oxford University Press.
  • Shapiro, Stewart. 1998. Review of Burgess, J. P. and Rosen, G. 1997 A subject with no object: Strategies for nominalistic interpretation of mathematics. Notre Dame Journal of Formal Logic 39/ 4: 600-12.
  • Shapiro, Stewart. 2000a. Thinking about mathematics. The philosophy of mathematics. Oxford: Oxford University Press.
  • Shapiro, Stewart. 2000b. The Status of logic. In Paul Boghossian and Christopher Peacocke, eds., New essays on the a priori, 333-366. Oxford: Clarendon Press.
  • Tarski, Alfred. 1929. Foundations of the geometry of solids. In Alfred Tarski, Logic, semantics, metamathematics. Second edition edited and introduced by John Corcoran, 24-29. Indianapolis: Hackett Publishing Company.
  • Tarski, Alfred. 1941/94. Introduction to logic and to the methodology of deductive sciences. Fourth Edition by Jan Tarski. Oxford University Press.
  • Zermelo, Ernst. 1930. Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematica 16: 29-47.