¿Cómo llega el agua a las nubes? Construcción de explicaciones sobre cambios de estado en educación infantil

  1. Sabela F. Monteira 1
  2. María Pilar Jiménez Aleixandre 1
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Journal:
Revista Eureka sobre enseñanza y divulgación de las ciencias

ISSN: 1697-011X

Year of publication: 2019

Volume: 16

Issue: 2

Pages: 2101

Type: Article

DOI: 10.25267/REV_EUREKA_ENSEN_DIVULG_CIENC.2019.V16.I2.2101 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista Eureka sobre enseñanza y divulgación de las ciencias

Abstract

This case study in a third year Early Childhood Education (ECE) classroom (23 children, 5-6 years old) and their teacher examines the evolution in children's explanations about state changes between liquid and gas in the course of a school science project that lasted for five months. They mobilized both their everyday and school science knowledge in order to build explanations. They developed the ability to apply scientific vocabulary to account for their everyday experiences. Children identified the phenomenon of evaporation more easily than the condensation. We propose a rubric for the analysis of the construction of explanations. Educational implications suggest that state changes should be addressed from ECE, since children are able to identify these phenomena, relate them to their everyday knowledge and build explanations about them, which may serve as a basis for developing more complex ones

Funding information

A la maestra, las niñas y niños. Al Ministerio de Economía y Competitividad (MINECO), que financió tanto el contrato de formación predoctoral de Sabela F. Monteira, código BES-2013-062873 (asociado al proyecto EDU2012-38022-C02-01); como el proyecto EDU2015-6643-C2-2-P.

Funders

  • MINECO Spain
    • EDU2012-38022-C02-01
    • EDU2015-6643-C2-2-P

Bibliographic References

  • Berland L. K., McNeill, K. L. (2010) A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education 94(5) 765–793.
  • Cruz-Guzmán M., García-Carmona A., Criado A. M. (2017) Aprendiendo sobre los cambios de estado en educación infantil mediante secuencias de pregunta-predicción comprobación experimental. Enseñanza de las Ciencias, 35 (3), 175-193. doi: 10.5565/rev/ensciencias.2336
  • Fleer M., Pramling N. (2015) A cultural-historical study of children learning science: Foregrounding affective imagination in play-based settings.Dordrecht, The Netherlands: Springer
  • Gee J. P. (2005) An introduction to discourse analysis: Theory and method. London: Routlegde.
  • Gustavsson L., Jonsson A., Ljung-Djärf A., Thulin, S. (2016) Ways of dealing with science learning: a study based on Swedish early childhood education practice. International Journal of Science Education, 38 (11), 1867-1881, doi: 10.1080/09500693.2016.1220650
  • Jiménez Aleixandre M. P. (2010) 10 ideas clave: en argumentación y uso de pruebas. Barcelona: Graó.
  • Johnson P. M. (1998) Children's understanding of changes of state involving the gas state, Part 1: Boiling water and the particle theory. International Journal of Science Education, 20, 567-583.
  • Kelly, G. J. & Green, J. (2019). Orientating ways of thinking: Theory and methods for the study of education. In G. J. Kelly & J. Green (Eds.) Theory and Methods for Sociocultural Research in Science and Engineering Education. London: Routledge.
  • Kuhn D., Pearsall S. (2000) Developmental origins of scientific thinking. Journal of Cognition and Development, 1, 113-129.
  • Littleton, K. & Mercer, N. (2013) Interthinking: putting talk to work. Abingdon: Routledge.
  • Leuchter M., Saalbach H., Hardy I. (2014) Designing Science Learning in the First Years of Schooling. An intervention study with sequenced learning material on the topic of ‘floating and sinking'. International Journal of Science Education, 36 (10), 1751-1771. doi:10.1080/09500693.2013.878482.
  • Neuendorf K. A. (2002) The content analysis guidebook. California: Thousand Oaks.
  • McNeill K. L. (2011) Elementary students’ views on explanation, argumentation and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793–823. doi:10.1002/tea.20430.
  • McNeill K. L, Krajcik J. (2008) Scientific explanations: Characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53–78. doi: 10.1002/tea.20201.
  • Mercer, N. (2000) Words and Minds. London: Routledge.
  • Merriam S. (2009) Qualitative research: A guide to design and implementation. San Francisco, CA: Jossey-Bass.
  • National Research Council (2012) A Framework for K–12 Science Education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • Organización para la Cooperación y el Desarrollo Económico (2012) Access to Early Childhood Education. In Education at a glance, 2012: Highlights. Paris: OECD Publishing. Recuperado de: http://dx.doi.org/10.1787/eag_highlights-2012-30-en.
  • Organización para la Cooperación y el Desarrollo Económico (2016) PISA 2015 Assessment and Analytical Framework. Science, Reading, Mathematic and Financial Literacy Recuperado de: http://dx.doi.org/10.1787/19963777
  • Osborne J. (2014) Scientific practices and inquiry in the science classroom, pp. 1835–1901 en Lederman N. G., Abell S. K. (coords.). Handbook of Research on Science Education, Volume II). New York: Routledge.
  • Piaget J. (1947) The Psychology of Intelligence. London: Routledge.
  • Pramling Samuelsson I., Asplund Carlsson M. (2008) The playing learning child: Towards a pedagogy of early childhood. Scandinavian Journal of Educational Research 52(6), 623–641. doi:10.1080/00313830802497265.
  • Siry C., Kremer I. (2011). Children Explain the Rainbow: Using Young Children's Ideas to Guide Science Curricula. Journal of Science Education and Technology, 20(5), 643-655
  • Siry C., Max C. (2013) The collective construction of a science unit: Framing curricula as emergent from kindergarteners' wondering. Science Education, 97, 878–902. doi: 10.1002/sce.21076
  • Siry C. (2014) Towards multidimensional approaches to early childhood science education. Cultural Studies of Science Education, 9(2), 297-304. doi:10.1007/s11422-012-9445-8
  • Songer N. B., Gotwals A. W. (2012) Guiding explanation construction by children at the entry points of learning progressions. Journal of Research in Science Teaching, 49(2), 141–165. doi: 10.1002/tea.20454
  • Tytler R. (2000) A comparison of year 1 and year 6 students  conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education 22 (5), 447 – 467.
  • Tytler R., Peterson S. (2004) Young children learning about evaporation: a longitudinal perspective. Canadian journal of science, mathematics and technology information 4 (1), 111-126
  • Zangori, L.; Forbes, C. T.; & Schwarz, C. (2015) Exploring the Effect of Embedded Scaffolding Within Curricular Tasks on Third-Grade Students’ Model-Based Explanations about Hydrologic Cycling. Science & Education, 24, 957–981. doi:10.1007/s11191-015-9771-9.