¿Criaríamos leones en granjas? Uso de pruebas y conocimiento conceptual en un problema de acuicultura

  1. Bravo Torija, Beatriz
  2. Jiménez Aleixandre, María Pilar
Journal:
Revista Eureka sobre enseñanza y divulgación de las ciencias

ISSN: 1697-011X

Year of publication: 2013

Volume: 10

Issue: 2

Pages: 145-158

Type: Article

DOI: 10.25267/REV_EUREKA_ENSEN_DIVULG_CIENC.2013.V10.I2.01 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista Eureka sobre enseñanza y divulgación de las ciencias

Abstract

The objective is to analyze the influence of the task in the use of evidence and scientific models while solving a problem about the sustainability of aquaculture. The participants are 134 biology undergraduates, from three consecutive years. The task asked them to compare the ecological efficiency of eating sardines and herrings or salmon. Results from one cohort when students had elaborated a concept map about ecological efficiency are compared with results from two cohorts when they had not. The findings show substantial differences both in the application of the models of energy flow or trophic pyramid and in the use of appropriate evidence to justify their claims. These differences point to the need to pay attention to the role of conceptual knowledge when designing activities in order to promote the development of the scientific competency in using evidence

Bibliographic References

  • Bravo Torija, B., y Jiménez Aleixandre, M. P. (2010) Is raising salmon sustainable? Use of concepts and evidence about ecology. En M. Hammann, A. J. Waarlo, y K. Th. Boersma (eds.), the nature of research in biological education: old and new perspectives on theoretical and methodological issues, (pp. 153-166). Utrecht: Utrecht university, fisme, cd-β press.
  • Brundtland Report (1987). Our Common Future. http://www.un-documents.net/ourcommon-future.pdf (Recuperado en febrero 2013)
  • Cañas, A., Martín Díaz, M.J. y Nieda, J. (2007). Competencia en el conocimiento y en la interacción con el mundo físico. Madrid: Alianza editorial.
  • Carlsson, B. (2002). Ecological Understanding 2: transformation—a key to ecological understanding. International Journal of Science Education, 24(7), 701-715.
  • Colucci-Gray, L., Camino, E., Barbiero, G. y Gray, D. (2006). From scientific literacy to sustainability literacy: an ecological framework for education. Science Education, 90, 227– 252.
  • Eilam, B. (2002). Strata of comprehending ecology: looking through the prism of feeding relations. Science Education, 86(5), 645-671.
  • Fernández Manzanal, R., y Casal Jiménez, M. (1995). La enseñanza de la ecología. Un objetivo de la educación ambiental. Enseñanza de las ciencias, 13 (3), 295-311
  • Gallegos, L., Jerezano, M. E., y Flores, F. (1994). Preconceptions and relations used by children in the construction of food chains. Journal of Research in Science Teaching, 31(10), 259-272.
  • Griffiths, A. K., y Grant, B. A. (1985). High school students’ understanding of food webs; identification of a learning hierarchy and related misconceptions. Jounal of Research in Science Teaching, 22(5), 421-136.
  • Gott, R., y Duggan, S. (1996). Practical work: its role in the understanding of evidence in science. International Journal of Science Education, 18 (7), 791-806.
  • Grotzer, T. A., y Basca, B. B. (2003). How does grasping the underlying causal structures of ecosystems impact students’ understanding? Journal of Biological Education, 38(1),16-29.
  • Hogan, K., y Fisherkeller, J. (1996). Representing students’ thinking about nutrient cycling in ecosystems: bidimensional coding of a complex topic. Journal of Research in Science Teaching, 33, 941-970.
  • Hogan, K., y Maglienti, M. (2001). Comparing the epistemological underpinnings of students’ and scientists’ reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687.
  • Ibarra Murillo, J. y Gil Quilez, M. J. (2009).Uso del concepto de sucesión ecológica por alumnos de secundaria: la predicción de los cambios en los ecosistemas. Enseñanza de las Ciencias, 27(1), 19 -32
  • Ibarra, J., Carrasquer, J., y Gil, M. J. (2010). Un proceso oscuro y anónimo: la descomposición de la materia viva. Alambique, 64, 99-108.
  • Jiménez Aleixandre, M. P., y Erduran, S. (2008). Argumentation in science education: an overview. En S. Erduran & M.P. Jiménez-Aleixandre (Eds.), Argumentation in science education: perspectives from classroom-based research (pp. 3-27). Dordrecht: Springer.
  • Jiménez Aleixandre, M. P., Bravo, B., y Puig, B. (2009). ¿Cómo aprende el alumnado a usar y evaluar pruebas? Aula de Innovación Educativa, 186, 10-12.
  • Kanari, Z., y Millar, R. (2004). Reasoning from data: how students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748-769.
  • Kelly, G. J. (2008). Inquiry, activity and epistemic practices. En R. Duschl, y R. Grandy (Eds.), Teaching Scientific Inquiry: Recommendations for research and implementation (pp. 99-117). Rotterdam: Sense Publishers.
  • Kelly, G. J., y Takao, A. (2002). Epistemic levels in argument: an analysis of university oceanography students’ use of evidence in writing. Science Education, 86, 314-312.
  • Magntorn, O., y Helldén, G. (2007). Reading new environments: students’ ability to generalise their understanding between different ecosystems. International Journal of Science Education, 29, 6-100.
  • Maloney, J. (2007). Children’s roles and use of evidence in science: an analysis of decisionmaking in small groups. British Educational Research Journal, 33(3), 371- 401
  • Ministerio de Educación (MEC). (2007). Real decreto 1631/2006 por el que se establecen las enseñanzas mínimas correspondientes a la educación secundaria obligatoria. BOE 5/01/2007, Madrid
  • Organización para la cooperación y el desarrollo económico (OCDE). (2006). Pisa 2006. Marco de la evaluación: conocimientos, habilidades en ciencias, matemáticas y lectura. Madrid: Santillana.
  • Özar, E., y Öztas, H. (2003). Secondary students’ interpretations of photosyntesis and plant nutrition. Journal of Biological Education, 37(2), 68-70.
  • Pauly, D., y Watson, R. (2003). Mares esquilmados. Investigación y Ciencia, 324, 16-22.
  • Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. (1998) Fishing down marine food webs. Science, 279, 860–863.
  • Pauly, D., Tyedmers, P., Froese, R. & Liu, L. Y. (2001). Fishing down and farming up the food web. Conservation Biology in Practice, 2(4), 25.
  • Puig, B., y Jiménez Aleixandre, M. P. (2010). What do 9th grade students consider as evidence for or against claims about genetic differences in intelligence between black and white ‘races’? en M. Hammann, A. J. Waarlo y K. Th. Boersma (Eds.), The nature of research in biological education: old and new perspectives on theoretical and methodological issues (pp. 153-166). Utrecht: Utrecht University, fisme, cd-β press.
  • Puig, B., Bravo, B., y Jiménez Aleixandre, M. P. (2012). Argumentación en el aula: Dos unidades didácticas. Santiago de Compostela: Danu. Descargable en www.rodausc.eu.
  • Rivera Ferre, M. G. (2007). Propuesta de la FAO para impulsar la acuicultura: ¿un modelos sostenible? Ecología Política, 32, 31-40.
  • Sadler, T., y Donnelly, L. A. (2006). Socioscientific argumentation: the effects of contentknowledge and morality. International Journal of Science Education, 28, 1463-1488.
  • Sandoval, W. A., y Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55.
  • von Aufschnaiter, C., Erduran, S., Osborne, J., y Simon, S. (2008). Arguing to learn and learning to argue: case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45, 101-131