Predicting using quantile regression methods
- 1 Departamento de Estadística e Investigación Operativa. Universidad de Santiago de Compostela
- Ginzo Villamayor, María José (ed. lit.)
- Alonso Meijide, José María (ed. lit.)
- Ramil Novo, Luis Alberto (ed. lit.)
Editorial: Sociedade Galega para a Promoción da Estatística e da Investigación de Operacións (SGAPEIO) ; Servizo de Publicacións ; Deputación de Lugo
ISBN: 978-84-8192-522-7
Ano de publicación: 2015
Páxinas: 135-147
Congreso: Congreso galego de Estatística e Investigación de Operacións (12. 2015. Lugo)
Tipo: Achega congreso
Resumo
Quantile regression methods are considered for computing predictions and prediction intervals of NOx concentration measured in the surroundings of the power plant of As Pontes (Spain). For these data, smaller prediction errors were obtained by median regression compared to mean regression. A new method to construct prediction intervals based on median regression and bootstrapping the prediction error is proposed. This new method rendered better coverage results for NOx data, compared to classical and bootstrap prediction intervals for mean regression, and also compared to simpler prediction intervals based on quantile regression. A simulation study is given to illustrate those features that, similarly to these particular data of NOx concentration, can be found in many other environmental datasets, and will lead to a better performance of the proposed method for obtaining prediction intervals.