Análisis epistémico y cognitivo de una tarea de visualización en el espacio bidimensional

  1. Blanco, Teresa F. 1
  2. Godino, Juan D. 2
  3. Diego-Mantecón, Jose 3
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  2. 2 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  3. 3 Universidad de Cantabria
    info

    Universidad de Cantabria

    Santander, España

    ROR https://ror.org/046ffzj20

Revista:
REDIMAT

ISSN: 2014-3621

Ano de publicación: 2018

Volume: 7

Número: 3

Páxinas: 251-279

Tipo: Artigo

DOI: 10.17583/REDIMAT.2018.2463 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: REDIMAT

Obxectivos de Desenvolvemento Sustentable

Resumo

In this article we present the types of objects and processes undertaken by an ideal subject in the resolution of a visualization task related to plane symmetries. In the framework of the ontosemiotic approach to knowledge and mathematical instruction this is equivalent to elaborating the epistemic configuration associated with the resolution of that task. This configuration will be used as a reference point to analyze the cognitive configurations of a sample of 400 pre-service primary education teachers and to formulate hypotheses about potential semiotic conflicts. These configurations, epistemic and cognitive, are constructed applying the categories of primary and secondary objects proposed by the ontosemiotic approach. The research methodology entails a mix method approach with both qualitative and quantitative components. The results have shown that the students have difficulties in applying visualization skills to decompose and recompose figures, as well as in recognising symmetry as movement in unusual contexts.

Referencias bibliográficas

  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241. doi: 10.1023/A:1024312321077
  • Battista, M. T. (2007). The development of geometric and spatial thinking. In F. Lester, (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908). Charlotte, NC: Information Age Publising.
  • Brown, D. L. & Wheatley, G. H. (1997). Components of imagery and mathematical understanding. Focus on Learning Problems in Mathematics, 19(1), 45-70.
  • Cohen, N. (2003). Curved solid nets. In N. Pateman, B. J. Dourgherty & J. Zillox (Eds.), Proceedings of the 27th PME International Conference (pp. 229-236). Honolulu, Hawai, USA: IGPME.
  • Debrenti, E. (2016). Some components of geometric knowledge of Prospective elementary teachers. In Csíkos, C., Rausch, A., & Szitányi, J. (Eds.). Proceedings of the 40th PME International Conference (pp. 292). Szeged, Hungary: IGPME.
  • Del Grande, J. J. (1987). Spatial perception and primary geometry. In Montgomery, M., and Shulte, A. (Eds.), Learning and Teaching geometry, K-12. Reston, VA: National Council of Teachers of Mathematics.
  • Del Grande, J. J. (1990). Spatial sense. Arithmetic Teacher, 37(6), 14-20.
  • Fernández, M. T. (2011). Una aproximación ontosemiótica a la visualización y el razonamiento espacial. Unpublised PhD dissertation. Universidad de Santiago de Compostela, Spain.
  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162. doi: 10.1007/BF01273689
  • Gal, H. y Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163-183. doi: 10.1007/s10649-010-9232-y
  • Gaulin, C. (1985). The need for emphasizing various graphical representations of 3-dimensional shapes and relations. Proceedings of the 9th PME International Conference (pp. 53-71). Noordwijkerhout, The Netherlands: IGPME.
  • Godino, J. D. (2002). Perspectiva ontosemiótica de la competencia y comprensión matemática. La matematica e la sua didattica, 4, 434-450. doi: 10.1590/1980-4415v31n57a05
  • Godino, J. D., Cajaraville, J. A. Fernández, T., & Gonzato, M. (2012). Una aproximación ontosemiótica a la visualización en educación matemática. Enseñanza de las Ciencias, 30(2), 163-184.
  • Godino, J. D., Batanero, C. & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM-The International Journal on Mathematics Education, 39(1–2), 127–135. doi: 10.1007/s11858-006-0004-1
  • Godino, J. D., Fernández, T., Gonzato, M. & Wilhelmi, M. R. (2013). Synergy between visual and analytical languages in mathematical thinking. In B. Ubuz, Ç. Haser, M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of European Research in Mathematics Education (pp. 645-654). Ankara, Turkey: ERME.
  • Goldin, G.A. (2007). Representation in School Mathematics A Unifying Research Perspective. In J. Kilpatrick (Ed.), A research companion to principles and standards for school mathematics (pp. 275-285). Reston: National Council of Teachers of Mathematics.
  • Gorgorió, N. (1998). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics, 35(3), 207-231. doi: 10.1023/A:1003132603649
  • Guillén, G. (2000). Sobre el aprendizaje de conceptos geométricos relativos a los sólidos. Ideas erróneas. Enseñanza de las ciencias, 18(1), 35-53.
  • Guillén, G. (2001). Las relaciones entre familias de prismas. Una experiencia con estudiantes de Magisterio. Enseñanza de las Ciencias, 19(3), 415-431.
  • Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. In L. Puig & A. Gutierrez (Eds.), Proceedings of the 20th PME International Conference (pp. 3-19). Valencia, Spain: IGPME.
  • Gutiérrez, A. y Jaime, A. (1996). Uso de definiciones e imágenes de conceptos geométricos por los estudiantes de magisterio. En A. Giménez, y otros (Eds.), El proceso de llegar a ser un profesor de primaria. Cuestiones desde la educación matemática (pp. 143-170). Granada: Comares.
  • Hershkowitz, R. (1989). Visualitation in geometry- Two sides of the coin. Focus on Learning Problems in Mathematics, 11(1), 61- 76.
  • Hill, H. C., Ball, D. L. y Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400. doi: https://www.jstor.org/stable/40539304
  • Hart, L. C., Smith, S. Z, Swars, S. L. y Smith, M. E. (2009). An examination of research methods in mathematics education (1995-2005). Journal of Mixed Methods Research, 3(1), 26-41. doi: 10.1177/1558689808325771
  • Jaime, A. y Gutiérrez, A. (1989). The learning of plane isometries from the viewpoint of the van Hiele model. Proceedings of the 13th PME International Conference (pp. 131-138). Paris, France: IGPME.
  • Malara, N. (1998). On the difficulties of visualization and representation of 3D objects in middle school teachers. En Olivier, A y Newstead, K. (Eds.), Proceedings of the 22nd PME International Conference (pp. 239-246). Stellenbosch, South Africa: IGPME.
  • Matsuo, N. (2000). States of understanding relations among concepts of geometric figures: Considered from the aspect of concept image and concept definition. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th PME International Conference (pp. 271-278). Hiroshima, Japan: IGPME.
  • MEC (2014). Real Decreto 126/2014, de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria. Boletín Oficial del Estado, 52, 19349-19420.
  • NCTM (2000). Principles and standards for school mathematics. EEUU: National Council of Teachers of Mathematics.
  • Orton, J. (1997). Pupil’s perception of pattern in relation to shape. In E. Pehkonen (Ed.), Proceedings of the 21th PME International Conference (pp. 304-311). Lahti, Finland: IGPME.
  • Owens, K. (1992). Spatial thinking takes shape through primary school experiences. In W. Geeslin & K. Graham (Eds.), Proceedings of the 16th PME International Conference (pp. 202-209). Durham, USA: IGPME.
  • Phillips, L.M., Norris, S.P., y Macnab, J.S. (2010). Visualization in mathematics, reading and science education. Dordrecht, The Netherlands: Springer.
  • Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 205-235). Rotterdam, The Netherlands: Sense Publishers.
  • Presmeg, N. (2008). An overarching theory for research in visualization in mathematics education. In Proceedings of the 11th International Congress in Mathematical Education ICME-11. Monterrey, Mexico: ICME.
  • Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. Research, theory, practice, and issues. Dordrecht: The Netherlands: Springer.
  • Son, Ji-Won. (2006). Investigating preservice teachers’ understanding and strategies on a student’s errors of reflective symmetry. In J. Navotna, H. Moraova, M. Kratna, & N. Stehlikova (Eds.), Proceedings of the 30th Annual Meeting of the International Group for the Psychology of Mathematics Education (pp. 145-152). Prague, Czech Republic: IGPME.