Calidad ambiental de suelos y aguas de la Mina Fésituación inicial y alternativas de recuperación

  1. Diego Arán 1
  2. José Ramón Verde 2
  3. Juan Antelo 2
  4. Felipe Macías 3
  1. 1 Inproyen Consulting
  2. 2 Instituto de Investigaciones Tecnológicas, Universidad de Santiago de Compostela
  3. 3 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Journal:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Year of publication: 2020

Volume: 10

Issue: 1

Pages: 81-100

Type: Article

More publications in: Spanish Journal of Soil Science: SJSS

Abstract

Mining activity leads to several environmental impacts. After the closure, the realization of a holistic evaluation of the main ecosystem components and their environmental risks is essential in order to define and manage a sustainable rehabilitation program specific to the current environmental situation. The objective of this work was to evaluate the chemical quality of the soils and runoff waters of the uranium mine, Fé mine (Saelices el Chico, Spain), in order to establish a diagnosis of the existing environmental problems and potential recovery actions to apply. Soils located within the mining area and natural soils from adjacent areas were sampled, classified according to the World Reference Base and analysed for their physico-chemical properties. Moreover, runoff water samples were collected for chemical and thermodynamic evaluation as well as, in the dry period, salt efflorescences from surface materials for chemical and mineralogical analysis. The natural soils (classified as Lithic, Haplic and Skeletic Leptosols, Leptic and Haplic Cambisols, Plinthic Acrisols, and Haplic and Gleyic Fluvisols) have low fertility (evaluated by concentration of nutrients and organic matter) and a strong erosive tendency which, together with the climatic conditions of the area, lead to a poor vegetation cover development. These soils are very incipient and are only located in areas where there is a permanent vegetation cover. Most of the mine soils are developed on different mixtures of host rock and sulfide-rich wastes, being classified as Sulfidic or Salic Spolic Technosols, depending on their specific properties and/or conditions. These mixtures of materials diminish the negative effect of the mine wastes, since the total concentrations of potentially toxic elements are similar (except for Pb) between mine and natural soils. However, these mine soils present a high environmental risk due to the generation of leachates with hyper-acid (pH ≈ 2.8), hyper-oxidant (Eh ≈ 759 mV) and hyper-conductor (EC ≈ 12.8 dS m-1) characteristics and with potentially high toxic elements (e.g. Al, Fe and Mn) and sulfates (22.9-33.9 g L-1). In the dry period, the ascension of the soil solution rich in elements contributes to the formation of evaporitic salts on the materials which were mainly identified as Al and Mg sulfates (epsomite and halotrichite). These solid phases are only temporary sinks of sulfate and metals, since they are re-dissolved with rain, releasing the elements to the environment. Moreover, the low fertility and cation exchange capacity, high acidity, stoniness and salinity of the mine soils limit the natural colonization and vegetative development. Considering the environmental risk and characteristics/conditions of the mine soils, the recovery process of the Fé mine should focus, mainly, on the sulfide oxidation minimization and fertility improvement in order to promote the establishment of a biodiverse plant cover as well as pedogenetic and biogeochemical processes.

Funding information

Los autores agradecen a ENUSA por la cooperaci?n t?cnica y la provisi?n del ?rea de estudio y muestras de campo; a Carmen P?rez y David Romero por el apoyo t?cnico; y a la Xunta de Galicia por el apoyo financiero del Grupo AMBIOSOL (GRC2014/003).

Funders

Bibliographic References

  • Abreu MM, Matias MJ, Magalhães MCF, Basto MJ. 2007. Potencialidades do Pinus pinaster e Cytisus multiflorus na fitoestabilização de escombreiras na mina de ouro de Santo António (Penedono); Rev Cienc Agrar; 30: 335–349.
  • Abreu MM, Batista MJ, Magalhães MCF, Matos JX. 2010. Acid mine drainage in the Portuguese Iberian Pyrite Belt. In: Brock CR, editor., Mine Drainage and Related Problems. New York: Nova Science Publishers. p. 71–118.
  • Abreu MM, Lopes J, Santos ES, Magalhães MCF. 2014a. Ecotoxicity evaluation of an amended soil contaminated with uranium and radium using sensitive plants. J Geochem Explor; 142: 112–121.
  • Abreu MM, Godinho B, Magalhães MCF. 2014b. Risk assessment of Arbutus unedo L. fruits from plants growing on contaminated soils in the Panasqueira mine area, Portugal. J Soil Sediment; 14: 744–757.
  • Adriano DC. 2001. Trace Elements in terrestrial environments: Biogeochemistry, bioavailability and risk of metals. New York: Springer-Verlag.
  • Arribas A. 1985. Origen, transporte y deposición del uranio en los yacimientos en pizarras de la provincia de Salamanca. Estud Geol; 41: 301–321.
  • Ávila PF, Ferreira da Silva E, Candeias C. 2017. Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ Geochem Health; 39: 565–589
  • Bech J, Abreu MM, Chon HT, Roca N. 2014. Remediation of potentially toxic elements in contaminated soils. In: Bini C, Bech J, editores. PHEs, environment and human health: Potentially harmful elements in the environment and the impact on human health. Netherlands: Springer. p. 253–308.
  • Both RA, Arribas A, de Saint-Andre B. 1994. The origin of breccia-hosted uranium deposits in carbonaceous metasediments of the Iberian Peninsula; U-Pb geochronology and stable isotope studies of the Fe Deposit, Salamanca Province, Spain. Econ Geol Bull Soc Econ Geol; 89: 584‒601.
  • Buol SW, Sánchez PA, Cate RB, Granger MA. 1975. Soil fertility capability classification. In: Bornemisza E, Alvarado A, editores. Soil management in tropical America. North Carolina State University, Raleigh NC, Unite State, p.126–141
  • Calvo de Anta R, Macías F, Riveiro A. 1992. Aptitud agronómica de los suelos de la provincia de La Coruña (cultivos, pinos, robles, eucaliptos y castaños). Ed. Diputación Provincial de La Coruña.
  • DOGA. 2009. Decreto 60/2009, do 26 de Febreiro, sobre solos potencialmente contaminados e procedemento para a declaración de solos contaminados. DOGA 57: 5920–5936.
  • FAO y ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.
  • Ferreira da Silva E, Ávila PF, Salgueiro AR, Candeias C, García-Pereira H. 2013. Quantitative–spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine (Portugal). Environ Sci Pollut Res Int; 20: 7534–7549.
  • IGME, Instituto Geologico y Minero de España, 1990. Mapa Geológico de España 1:50.000, Ciudad Rodrigo, Ideal Ed. Madrid.
  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.
  • Kabata-Pendias A, Pendias H. 2001. Trace elements in soils and plants. Boca Raton: CRC Press, Inc..
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta; 27: 31–36.
  • Macías F, Calvo de Anta R. 2008. Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Santiago de Compostela: Xunta de Galicia.
  • Monterroso C, Macías F. 1998a. Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain): Composition and mineral stability. Sci Total Environ; 216: 121–132.
  • Monterroso C, Macías F. 1998b. Aguas de drenaje de mina afectadas por la oxidación de sulfuros. Variaciones estacionales de su composición. Bol Soc Esp Cienc Suelo; 5: 71–82.
  • Monterroso C, Macías F, Gil Bueno A, Val Caballero C. 1998. Evaluation of the land reclamation project at the As Pontes Mine (NW Spain) in relation to the suitability of the soil for plant growth. Land Degrad Dev; 9: 441–451.
  • Neves MO, Figueiredo VR, Abreu MM. 2012. Transfer of U, Al and Mn in the water–soil–plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health. Sci Total Environ; 416: 156–163
  • Nordstrom DK. 1982. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals; In: Kittrick JA, Fanning DS, Hossner LR, editores. Acid sulfate weathering. Soil Sci Soc America Spec Pub; 10, 37–56.
  • Parkhurst DL, Appelo CAJ. 2013. Description of input and examples for PHREEQC version 3--A computer program for speciation, batch- reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43.
  • Peech M, Alexander LT, Dean LA, Reed JF. 1947. Methods of soil analysis for soil fertility investigations. USDA 575. Washington, DC: US Gov. Print. Office.
  • Sánchez-España J, Pamo EL, Santofimia E, Aduvire O, Reyes JA, Barettino D. 2005. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Appl Geochem; 20: 1320–1356.
  • Sánchez-España J, Toril GE, Pamo EL, Amils R, Ercilla MD, Pastor ES, San Martín-Úriz P. 2008. Biogeochemistry of hyperacid and ultraconcentrated pyrite leachate in San Telmo mine (Iberian Pyrite Belt, Spain). Water Air Soil Pollut; 194: 243–257.
  • Santos ES, Abreu MM, Macías F, de Varennes A. 2016. Chemical quality of leachates and enzimatic activities in Technosols with gossan and sulfide wastes from the São Domingos mine. J Soil Sediment; 16: 1366–1382.
  • Santos ES, Abreu MM, Macías F, Magalhães MCF. 2017. Potential environmental impact of technosols composed of gossan and sulfide-rich wastes from São Domingos mine: assay of simulated leaching. J Soil Sediment; 17: 1369–1383.
  • StatSoft, Inc. 2007. STATISTICA (data analysis software system), version 8.0. www.statsoft.com.
  • Wong MH. 2003. Ecological restoration of mine degraded soils with emphasis on metal contaminated soils. Chemosphere; 50: 775–780.